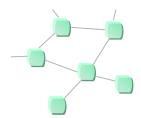


COLLABORATIVE WORK with GNUTELLA


by Valentin Mesaros (UCL)*

* Partial results of the cooperative work between Valentin Mesaros, Bruno Carton and Brieuc Florent

GNUTELLA: CHARACTERISTICS

- Gnutella is a distributed system for file sharing
 - provide means for network discovery (viral diffusion)
 - provide means for file searching and sharing (network crosscut file sharing)
- Defines a network at the application level
 - hosts running gnutella protocol
 - it runs over TCP/IP
- Employs the concept of peer-to-peer
 - all hosts are equal (symmetry)
 - there is no central point
- Provides pseudo-anonymity
 - anonymous search, but reveal the IP addresses when downloading

GNUTELLA: PROTOCOL (I)

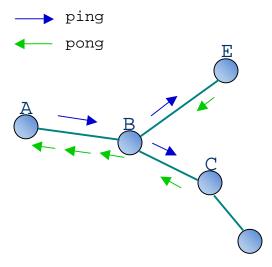


Fig 1. Network discovery

- A discovers its *horizon* (e.g., TTL = 2)
 - send ping to its neighbors (broadcast)
 - ping msg is forwarded if TTL>0
- Receiving ping, B,C and E, respond pong
 - pong contains network info about its sender
 - B forwards pong msgs from E and C, to A

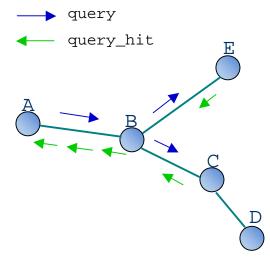
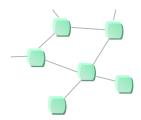
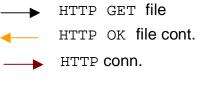




Fig 2. Network querying

- A searches the network (e.g., TTL = 2)
 - send query to its neighbors (broadcast)
 - the query is forwarded if TTL > 0
- B,C and E, respond with query_hit
 - query_hit contains network info about where to download the file from
 - B forwards query_hit msgs from E and C, to A

GNUTELLA: PROTOCOL (II)

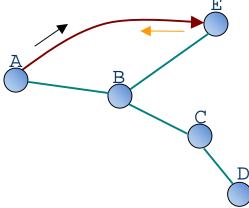
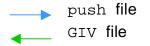
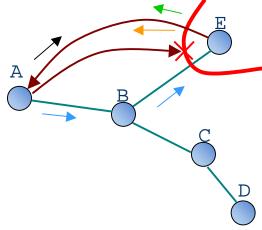
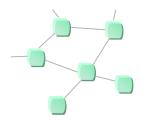
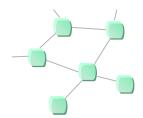



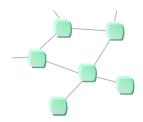
Fig 3. Download a file

- •A issues an HTTP query for a file found at E
 - initiate a TCP connection to E, for instance
 - send an HTTP GET file query to E
- E responds by sending the requested file
 - E acts as a web server sending the file content

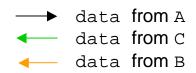



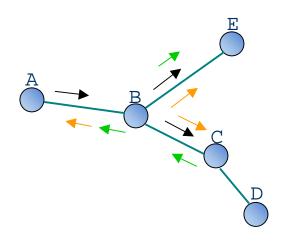

Fig 4. Download a firewalled file

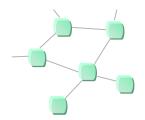
- A fails initiating a TCP connection to E
- A instructs E to push the file
- E initiates a TCP connection to A
- E instructs A to issue the download (GIV msg)
- A issues an HTTP query for the file found at E
- E responds by sending the requested file


GNUTELLA: LIMITATIONS

- 1. Weak support for collaborative work
 - the only way to exchange information is point-to-point
- 2. Weak support for maintaining the network connectivity
 - through peer's *horizon*, or well-known *host cache*s
- 3. Inefficient bandwidth usage for network discovery and querying
 - broadcast-based approach
- 4. Impossible to download files between two firewalled peers
- 5. No support for security
 - the shared information is not protected
 - risk of denial of service attacks

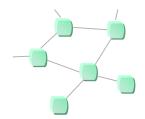

GNUTELLA: POSSIBLE EXTENSIONS


- 1. Extension for collaborative work
 - add a message for data transport (e.g., raw, XML, Oz strct.)
- 2. Maintain the network connectivity
 - when any of a peer's neighbors dies, try to connect to of the neighbors of the latter
 - 3. Extension for network monitoring
 - employ a lease-based event model
 - tunable from the user level
 - 4. Extension for file sharing between two firewalled peers
 - delegate the task to a third party

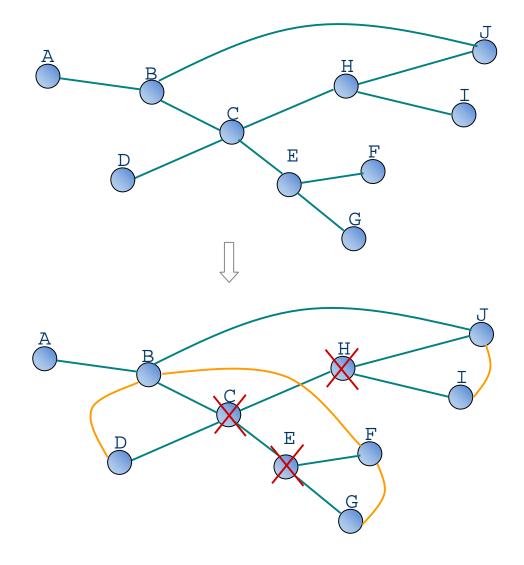


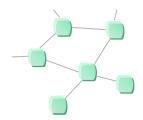
EXTENSION FOR COLLABORATIVE WORK

- Introduce data message
 - the msg payload is set at the upper level
 - e.g. of payload: raw data, XML, Oz structures
- Data diffusion
 - data can be sent via one or more peer interfaces
 - data is routed as ping msg is; based on TTL
- Implement ones own protocol at higher level
 - data msg can be used to specialize gnutella
- Resemblance with IP Multicast
 - data can be shared by every peer
 - consequence : somehow, have the peers grouped



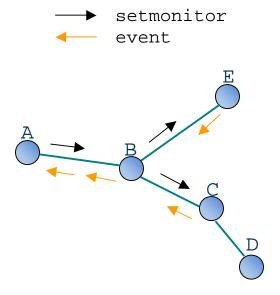
MAINTAIN GRAPH CONNECTIVITY

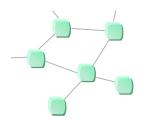

- Introduce cping and cpong messages
 - cping is the same as ping, but it triggers cpong
- cpong contains info about the connectivity of its sender
 (i.e., who it is connected to)
- a peer can know more about the topology of its horizon
- When its neighbor fails, it must do the followings:
 - 1. try to connect to all of the neighbors of the dead peer
- 2. if all of the neighbors of the dead peer are dead, repeat step 1 for their neighbors
- 3. when a connection succeeds, check whether the remaining neighbors need to be connected to



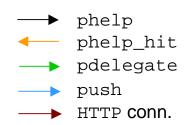
MAINTAIN GRAPH CONNECTIVITY

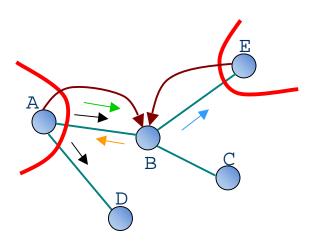
before peer failures

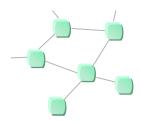

after peer failures



EXTENSION FOR NETWORK MONITORING


- Introduce setmonitor message
 - setmonitor registers for one or more events
 - indicate a lease for the requested events
- Introduce unsetmonitor message
 - unsetmonitor unregisters for one or more events
- The events are requested for a certain horizon
- Introduce event message
- event issued whenever the requested event occurs
- event msg is routed to the requester
- event triggering is controllable from the user level





EXTENSION FOR FIREWALLED PEERS

- Both, A and E, are beyond firewalls
- A intends to download a file from E:
 - A asks for third party help (i.e., phelp)
 - B responds positively (i.e., phelp_hit)
 - A asks B to do the job (i.e., pdelegate)
 - B does the downloading from E as it were the requester (i.e., push)
- A gets the respective file from B
 - A connects to B and downloads the file using HTTP

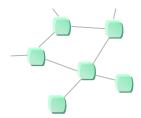
Gnutella vs. Global Store

1. Centralization

GS: internal coordinator for performance (no single point of failure)

Gnutella: completely decentralized

2. Transactions


GS: the shared data may be changed only within transactions

Gnutella: permit simultaneous inconsistent views

3. Network scalability

GS: each node is a replication point

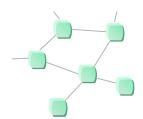
Gnutella: handle very large number of nodes

APPLICATION: PostIt

- PostIt is a collaborative application:
 - common forum for message exchange
 - fully replicated
- PostIt implemented over GS (Fig 1.)
 - rapid reaction to failures
 - consistency assured by GS
- PostIt over gnutella-extended (Fig 2.)
- e.g., make use of the data message
- the connectivity of the network is eventually maintained
- consistency is implemented at an upper level (i.e., specialized protocol layer)

PostIt app.
Global Store
Mozart

Fig 1. app. layering over GS


PostIt app.

specialized protocol
(e.g., consistency)

peer-to-peer protocol
(gnutella -extended)

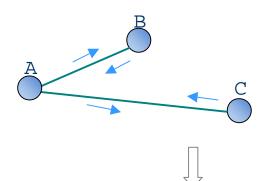
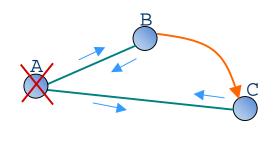
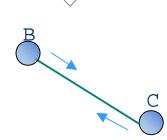

Transport protocol
(TCP/IP)

Fig 2. app. layering over gnutella



DEMO: PostIt over gnutella


1. have a number of peers running PostIt app.

2. after peer failures, the graph remains connected keeping the app. consistency

3. the remaining nodes continue communicating

