NetProber: a Component for Enhancing Efficiency of Overlay
Networks in P2P Systems*

Luc Onana Alima
Dept. of Microelectronics and Information Technology
Royal Institute of Technology
Kista, Sweden
onana@it.kth.se

Peter Van Roy
Dept. of Computing Science and Engineering
Université catholique de Louvain
Louvain-la-Neuve, Belgium
pvr@Qinfo.ucl.ac.be

Abstract

The Peer-To-Peer (P2P) computing paradigm is an
emerging paradigm that aims to overcome most of the
main limitations of the traditional client/server archi-
tecture. In the P2P setting, individual computers com-
municate directly with each other in order to share in-
formation and resources without relying on any kind
of centralized server. To achieve this full decentral-
ization, an application-level (or overlay) network is
constructed using, for example, TCP connections.

In most of the existing P2P systems, the overlay
network is built in a manner that does not guarantee
that the overlay network is efficient with respect to a
given metric (e.g. latency, hop count and bandwidth,).
Hence, an overlay node can be very far away, in terms
of a given metric, from its overlay neighbors. This
can result in both, an inefficient routing at the overlay
network and an ineffective use of the underlying IP
network.

In this paper, we first introduce a new measure,
“goodness of overlay networks”, to quantify the quality
of an overlay network for a given metric. Then, we
propose NetProber, o simple, distributed and scal-
able component that can be combined with any con-
nected overlay network in order to allow the latter to
adapt, and to become “good” within a finite amount of
time.

*This research is partially funded by the PIRATES project
of the Walloon Region (Belgium) and the PEPITO project of
the European Union.

Valentin Mesaros
Dept. of Computing Science and Engineering
Université catholique de Louvain
Louvain-la- Neuve, Belgium
valentin@info.ucl.ac.be

Seif Haridi
Dept. of Microelectronics and Information Technology
Royal Institute of Technology

Kista, Sweden
seif@it.kth.se

1. Introduction

The client /server paradigm has established itself as
the most popular paradigm in building distributed ap-
plications. The main characteristics of this paradigm
is that the application is structured in two types
of components: clients and servers. In a simple
client /server architecture, we have a centralized server
and one or more clients that are serviced by the
server on demand. Although there are many applica-
tions structured this way, it should be mentioned that
client /server applications have limited availability and
scalability.

The availability of the client/server architecture is
limited, because the server is usually a single point
of failure. In the case the server crashes, the clients
might need to wait for a significant period of time in
order to get access to the service. To overcome this
limitation, client/server applications often make use of
sophisticated mechanisms for fault-tolerance and load-
balancing.

The limitation on scalability of client/server appli-
cations is obvious when it comes to the Internet scale.
As the number of clients increases, the performance
decreases, because the server becomes a bottleneck.

The Peer-to-Peer (P2P) computing is an emerging
paradigm that enables computers connected through
the Internet to act as both clients and servers. In con-
trast to client/server architectures, in the P2P setting,
there is no centralized server to which clients can con-
nect to, but rather the system control is fully decen-

tralized. The principle of these systems lies in the fact
that the global properties of the system must emerge
from simple and local interactions of its components
(called peers).

Currently, P2P applications include file sharing ap-
plications [1, 2, 3], persistent storage services [12, 4]
and distributed lookup services [13, 6, 7].

A common characteristic of most of the existing
P2P systems is that they build an application-level
or overlay network along with its own routing mecha-
nism. In an overlay network, each node can play the
role of a client (i.e. generating requests), server (i.e.
providing some services) and router (i.e. forwarding
requests to their destination).

The structure of the overlay network and the rout-
ing used are of paramount importance for the appli-
cation properties. Achieving good performance of the
routing at the overlay network level and/or making
better use of the underlying IP network surely depends
on how “good” the structure of the overlay network is.
At this point, it is worth questioning what the good-
ness of an overlay network is. Currently, we are in-
vestigating this question; the next subsection presents
our preliminary results in defining this notion.

1.1. Goodness of overlay networks

In order to introduce a formal definition for the
notion of goodness of an overlay network, we first give
some preliminary definitions.

Throughout this paper, we represent a network by
an undirected graph G = (V, &) where each node is
represented by a vertex u € V, and an edge (u,v) € £
represents a bidirectional communication link between
uand v. A node u € £ is said to be a neighbor of v € V
if there is an edge (u,v) in G. We represent the set
of neighbors of a node v by N(v) and we use n, to
denote the size of N(v).

In the rest of this paper, we assume connected net-
works, i.e., there is a path from each node to any other
node of the network. We call path of G, a sequence of
nodes vg,v1,- - -,v; in which no node appears more than
once and for 1 < i < k, (v;_1,v;) € €. Given a path
p, we write nodes(p) to denote all the nodes that ap-
pear in p. We represent a path which first and second
nodes are respectively v and v by p,, and we use 'y,
to denote all such paths. We shall write Nodes(I',)
for Uper,, nodes(p)

Definition 1.1 Let A = (V,€) be an overlay net-
work. Let d be some metrict (e.g. bandwidth, latency,

1We assume that d is symetric and satisfies the triangle in-
equality.

Figure 1: Good/bad links illustrated. Solid lines rep-
resent the physical network. The dashed lines repre-
sent the overlay network. The numbers between two
nodes represent the distance between the two nodes.

number of IP hops) over A. An edge (u,v) € £ is said
to be a good link at u, with respect to d if and only if
there is no path py, that contains a node w ¢ N(u)
such that d(u, w) < d(u,v). A link (u,v) is said to be
bad at u, with respect to d iff (u,v) is not a good link
at u.

Notice that a link (u,v) can be good at node u while
being bad at node v. Figure 1 illustrates the idea of
good (respectively bad) links. In this figure, each cir-
cle represents a machine hosting an overlay node, solid
lines represent a physical network, and the dashed
lines represent the overlay network. FEach number
between two nodes represents the distance between
the two nodes. According to Definition 1.1, the link
(n1,n3), for example, is a good link at ng. But the
same link is a bad link at node nj; the link (ng,ns) is
a good link both at ng and at ns.

Definition 1.2 Let A = (V,&) be an overlay net-
work. Let d be some metric over A. Let u € V and
v € N(u). We call the closest node to u via v, denoted
closest(u,v), a node w # u such that

d(u,w) = min {d(u,z)}

ze Nodes(I o) AzgN (u)

If there is no node w that satisfies the above condition,
then closest(u,v) = v.

We can now introduce the notion of goodness of an
overlay node.

Definition 1.3 Let A = (V,€) be an overlay net-
work. Let d be a metric over A. Let u € V. The
goodness of u with respect to d is

> ven(u) d(u; closest(u, v))
> e N(u) Au,)

gness(u,d) =

From Definition 1.2 and Definition 1.3, the following
lemma is derived.

Lemma 1.1 Let A = (V,&) be an overlay network.
Let d be a metric over A. For every u € V, we have

0 < gness(u,d) <1

From Definition 1.3 and Definition 1.1, the follow-
ing lemma follows.

Lemma 1.2 Let A = (V,&) be an overlay network.
Let d be a metric over A. Let uw € V. If all links
(u,v), v € N(u), are good at u with respect to d, then
gness(u,d) =1

We now give our formal definition of the goodness of
an overlay network given a metric d.

Definition 1.4 Let A = (V,&) be an overlay net-
work. Let d be a metric over A. The goodness of
A with respect to d is

> ucy gness(u, d)

Gness(A, d) = V]

From Lemma 1.1 and Definition 1.4, the following
Lemma follows.

Lemma 1.3 Let A = (V,&) be an overlay network.
Let d be a metric over A. We have that

0 < Gness(A,d) <1

We say that an overlay network is good with respect
to a given metric d, when its godness tends to one.

Our investigation of the goodness of overlay net-
works is a work in progress. However, it is worth men-
tioning that having a formal definition of the notion
of goodness was a key in deriving the algorithm of the
NetProber.

1.2. Problem statement

In most of the existing P2P systems, the overlay
nodes join the network in a way that does not guaran-
tee that the resulting network is good (in the sense of
the aforementioned goodness). In most of the exist-
ing P2P systems [3, 1, 14, 7, 13], a new node joining
the overlay network, connects itself to a small subset
of known nodes already in the system, no matter how
far, in terms of a given metric, the existing nodes re-
side. This might lead, for example using the hop count
metric, to an overlay network in which, a node a; at
UCL (Belgium) has its neighbors in USA and hence
an overlay message from node a; to a nearby node

as, at Amsterdam, will pass through distant nodes in
USA in order to reach its destination. This, evidently
is an undesirable situation as it could lead to a high
latency and/or an inefficient use of the underlying IP
network.

The problem we consider in this paper hereupon
can be stated as follows:

Given an overlay network A = (V, £), where
each node u € V obtains its neighbors ran-
domly, and a metric d over A, how could we
let, in a distributed and scalable manner, A
adjust itself such that within a finite time, A
becomes good with respect to the metric d?

In the sequel of this paper, we refer to this problem as
the mismatching problem.

1.3. Contribution

The contribution of this paper is twofold. First, we
introduce a formal characterization of the goodness of
an overlay network A given a metric d. Second, we
provide a simple, distributed, and scalable component
called NetProber that can be combined with any
connected randomly built overlay network in order to
let the network become good with respect to a given
metric d, within a finite time.

An interesting property of the proposed component
is that the component requires only very few changes
of any overlay network that intends to use it.

1.4. Related work

The mismatching problem is considered to be a se-
rious problem in recent P2P designs [11, 13, 9, 10]. Al-
though this has been pointed out by several authors, a
formal characterization has been missing, hence mak-
ing the problem difficult to understand or solve in a
rigorous manner.

When we chose the hop count as metric, it became
obvious that a good overlay network is one which is
close to the underlying IP network. This results in the
problem mentioned by M. Ripeanu in [11], where the
author suggested two ideas for solving the mismatch-
ing problem in order to improve the performance of
Gnutella and similarly built systems. The first idea
suggested by Ripeanu in [11] consists of using an agent
that constantly monitors the overlay network and in-
tervenes by asking servents (i.e., overlay nodes) to
drop or add connections as necessary to keep the over-
lay network efficient. The second idea in [11] consists
of using less expensive routing mechanisms and the

abstraction of group communications. However, no
mention is made about how to implement these ideas.

In [5], the authors proposed an heuristic that can be
used to construct overlay networks with low diameter
in enterprise P2P applications. The proposed solution
bears some form of centralization and is not suitable
for large scale peer-to-peer systems, which are the kind
of systems we target.

Using latency as the metric, Ratnasamy et al. [§]
propose a scheme called binning for constructing CAN
(Content Adressable Network) topologies that are con-
gruent with the underlying IP network. The idea
builds on the use of a set of well known machines,
for example DNS root name servers that act as land-
marks in the Internet. Each overlay node (or CAN
node, in the terminology of the authors) measures its
round-trip-time to each of the landmarks. Using these
measurements, each overlay node sorts the landmarks
in order of increasing round-trip-time. Each order-
ing of landmarks corresponds to a portion of the d-
dimensional coordinate space on which CAN is based.
Thus, in order for a node to join the CAN, it must first
bin itself. That is, it must first order the landmarks to
determine the portion of the virtual coordinate space
through which it must enter the CAN. Assuming that
nodes that are close to each other at the underlying
physical network will have the same ordering of land-
marks, it follows that they will be neighbors of each
other at the overlay network level. We believe that this
idea might be very difficult to implement, because, for
example, of the difficulties that are involved in the par-
titioning of the virtual coordinate space. Furthermore,
this scheme introduces some form of rigid hierarchy,
which is not desired in pure P2P systems.

1.5. System model

1.5.1. Distributed system

We consider a distributed system as a set of nodes (or
processes) linked together through a communication
network.

Nodes communicate by message passing. Each mes-
sage has the form (s : d : TYPE(param)) where s iden-
tifies the sender, d identifies the destination, TYPE de-
notes the type of the message and param denotes the
parameters that depend on the type of the message.

A process s sends a message (s : d : TYPE(param))
to another process d by executing the statement
send(s : d : TYPE(param)). The effect of execut-
ing this statement is to add the message (s : d :
TYPE(param)) to the communication network. Each
message added to the communication network remains

there until the destination process removes it. How
and when a message is removed from a communica-
tion network is explained in section 1.5.4.

1.5.2. Communication networks

Topology. In what follows, we assume that commu-
nication networks are connected, i.e., there is a path
from each node to any other node in the system.
Network behavior. We assume communication net-
works that satisfy the following properties:

(i) Asynchronism. The time taken by the communi-
cation network to forward a message to its desti-
nation is arbitrary but finite.

(ii) Reliability. Every message injected into a com-
munication network is eventually delivered to its
destination provided that the latter remains con-
nected to the communication network.

Network states. A state of a communication net-
work consists of the messages currently in it.

1.5.3. Processes

Each process (or node) executes an algorithm that
consists of a finite set of variables and a finite set of
rules. Each variable has a predefined non-empty do-
main.

Node (or process) states. A state of a node n is
defined by a value for each variable of n.

Algorithm specification. Each algorithm exe-
cuted by a node consists of a set of rules. Each rule
has the form %. The CONDITION of a rule
is a boolean expression over the variables of the node
and/or at most one receive condition. A receive condi-
tion is of the form receive(s : d : TYPE(param)). The
evaluation of receive(s : d : TYPE(param)) by node
d returns true if a message (s : d : TYPE(param))
is available for node d in its communication network;
otherwise it returns false.

The ACTION part of a rule consists of a sequence of
statements, which is executed atomically.

1.5.4. System configurations and computations

System configurations. A configuration of a dis-
tributed system consists of a state for each node of the
system and a state for its communication network.

A rule R of a process p is said to be enabled at a
configuration (3; of the system if and only if the CON-
DITION of R, evaluates to true at 3;. The action of a
rule can be executed at a configuration 3; only if that
rule is enabled at [3;.

System computations. A computation (3 of a dis-
tributed system is a nonempty, fair and maximal se-
quence of configurations fg, 31,32, -+ such that for
each i > 0, B;41 is obtained from §; by an atomic exe-
cution of an enabled rule. If in 3; more than one rule
is enabled, one is selected non-deterministically. By
maximal, we mean that the sequence is either finite or
infinite. When the sequence is finite, the last config-
uration of the sequence is a fixed point, i.e. the exe-
cution of any rule from that configuration leaves the
system in the same configuration. By fair we mean
that any rule that is continuously enabled is eventu-
ally executed. That is, we assume weak fairness.

How messages are removed from a commu-
nication network. Executing a rule with a receive
condition in the CONDITION part removes the corre-
sponding message from the communication network
and performs the action part of the rule in an atomic
manner.

1.6. Organization of the paper

The remainder of this paper is structured as follows:
Section 2 presents the architecture and an overview of
a NetProber-based system. In Section 3, we give a
formal description of the algorithm of the NetProber
system. Finally, we conclude in Section 4.

2. NetProber design

This section describes NetProber. In sub-
section 2.1, we give a conceptual architecture of
a NetProber-based overlay system. In subsec-
tion 2.2, we present an informal description of how
a NetProber-based overlay system works.

2.1. Architecture of a NetProber-based
overlay system

Figure 2 shows the architecture of a NetProber-
based overlay system. Each overlay node has an as-
sociated NetProber element. Hereupon, we use the
following convention: for an overlay node u, we write
np,, to denote the NetProber element associated with
u.

The bidirectional arrows between an overlay node
and its associated NetProber element represents the
fact both components interact. An overlay node u
invokes its NetProber element rp, when it wishes to
switch a neighbor v. In response to such an invocation,
np,, sends a suggestion to u. This suggestion contains

Overlay node A e .| Overlay node B

: i

Netprober A ||Netprober B

Communication network

Figure 2: Structure of a NetProber-based overlay net-
work. Messages between overlay nodes are forwarded
using the overlay routing mechanism. Messages be-
tween NetProber elements are routed using the un-
derlying IP network.

the identifier of an overlay node which is closer (for a
given metric) to u than v.

2.2. Informal description of the NetProber
algorithm

In brief, a NetProber-based overlay system works
as follows: when an overlay node u wishes to adjust its
neighborhood with respect to one of its neighbors, say
v, node u invokes its NetProber element, np,. This
invocation is done by a message of type FINDBET-
TERNEIGHBOR, which takes two parameters: the first
parameter is the identifier, v of the neighbor that u
wishes to switch, and the second parameter is a met-
ric, which the NetProber element uses in order to
find a better neighbor (if any), with respect to v. We
regard this metric as a quality of service (QoS) param-
eter.

When mp,, receives FINDBETTERNEIGHBOR(v,d),
np,, sends a message of type
NETPROBEREQUEST(L,v) to mp,, where the first
parameter, L, is called the level of the request
and is set to 0 when mp, sends the request to v.
Setting the level of the request to 0 is an indication
that np, sends to np, asking for the set of pairs
P, := {(w,mp,,) | (w € N(v) A (w # u))}. The
second parameter is simply the identifier of v, which
is merely used for matching responds to requests.

When np, receives a NETPROBEREQUEST(L,v)
with L = 0 from np,,, np, responds by sending a mes-
sage of type NETPROBEREPLY(L, v, P,) to np,,. This
response carries the set of pairs P, := {(w,mp,,) | (w €
N(@)) A (w# u)} and L is the level of the reply. In
addition, this message conveys relevant information
that np,, uses in order to determine a better neighbor
(if any) for u, with respect to v.

When np,, receives NETPROBEREPLY from np,,, np,,

mainly does two things. First, it retrieves the relevant
information that will be used for the determination of
the better candidate, if any. The relevant information
depends on the metric used. For example, if the met-
ric used is latency, the relevant information that np,
retrieves from the received response will be an esti-
mate of the round-trip-time. Another example is the
case when the metric used is the IP hop count, thus
the relevant information that np, retrieves from the
NETPROBEREPLY message is the number of IP hops.
Second, np,, sends a NETPROBEREQUEST message to
each np,, such that (w,np,,) € P,. The first parameter
of the NETPROBEREQUEST message that np,, sends to
each np,, is of level 1.

Each NetProber element np,, associated with w €
N(v) that receives a NETPROBEREQUEST of level 1
from mp, responds by sending a NETPROBEREPLY
message that carries the singleton set {(w, np,,)}.

Hence, when mnp, has received a NETPROBERE-
PLY (and retrieved relevant information) from each
np,, such that (w,mp,) € P, = {(w,mp,) | (w €
N@)) A (w # u)}, np, computes the “better” candi-
date that is returned to u in a message of type SuG-
GESTION, which gives just an indication to u. It is
the responsibility of u to decide whether or not the
connection with v is to be put off.

The better candidate is an overlay node w that sat-
isfies the following three conditions:

(i) w is a neighbor of v;

(ii) the distance (in terms of the given metric) be-
tween v an w is smaller than that between u and
U3

(iii) w is not a neighbor of w.

If such a node w does not exist, then the better can-
didate is v itself.

Switching a connection. We have said that the
NetProber only suggests “better” candidates to the
overlay layer. The important issue to investigate now
is the way a disconnection actually takes place. An
uncoordinated disconnection might easily lead to sys-
tem configuration, where some nodes are isolated.
To illustrate the idea, consider the system of three
nodes given in Figure 3. In this figure, assume that
d(u,w) < d(u,v) and d(u,w) < d(w,v). Now, if by
running the NetProber algorithm, nodes v and w
discover by the same time that they should each switch
their connection with v, node v might become isolated.
To overcome this problem, we propose that the discon-
nection be done in an “agreed transaction”, i.e. when
a node u decides to change its neighbor v by a better

Figure 3: Necessity of coordinated disconnection il-
lustrated. Solid lines represent the physical network.
Dashed lines represent the overlay network.

candidate neighbor w, node u asks v if it accepts this
change. Node v will accept the change only if it is still
connected to w. Hence, if a request from w arrives at
v asking if v accepts to let w change its connection
from v in order to connect to u, node v will reject this
request from w, because v is no longer connected to
u. In this way, we maintain the connectivity of the
overlay network.

3. Algorithm

This section presents a formal description of the
NetProber algorithm. We begin in subsection 3.1,
with a presentation of the key data structures used.
Then, in subsection 3.2 we give the rules specifying
the behavior of a NetProber element upon receiving
each of the messages involved in a NetProber-based
system.

3.1. Key data structures

Let consider that we have the following sets:

e Quverlayld: the set of all possible identifiers of
overlay nodes;

e NetProberld : the set of all NetProber identi-
fiers.

We assume that an arbitrary NetProber element np,,
has access to or maintains the following components:

e Neighbors : Overlayld — NetProberld
This mapping is provided by the overlay layer.

e DistanceTable : Overlayld — (Overlayld — R;)

Let d be the metric used. At a NetProber el-
ement 7p,,, this variable serves to store for an
overlay node v € N(u), the set {(v,d(u,v)} U
{(w,d(u,w)) | w € N(u) Nw # u}. Initially,
this mapping is empty.

o WaitSet : Overlayld — 2NetProbeld

This variable serves to store the identifiers of
the NetProber elements from which a NET-
PrROBEREPLY message is expected. Initially, this
mapping is empty.

o WorkingSet : set of identifiers of overlay nodes.

This variable serves to store the identifiers of the
overlay neighbors of u that u is currently trying
to replace. Initially, this set is empty.

e (OtherNeighbors : Querlayld — o Overlayld

Initially, this mapping is empty.

In the sequel, we use the following convention. Given
aset P of pairs, we denote by P; (respectively Pj3) the
set obtained by taking the first (respectively second)
component of each pair in P.

Another convention that we use in this paper is the
following: Let m be a mapping from a set A to another
set B. For z € A, we write m(z) = L to mean that the
mapping m is undefined for . We write m(x) := L to
mean that we remove the entry x from the mapping
m.

3.2. Formal description of the NetProber
algorithm

The NetProber algorithm has mainly three rules.
Rule (1) describes the reaction of a NetProber el-
ement np, upon receiving a FINDBETTERNEIGHBOR
message from its overlay node u. In this rule, d de-
notes the metric used to determine better neighbors.

receive(u : mp,, : FINDBETTERNEIGHBOR(v, d)) A
v & WorkingSet
np, = Neighbors(v)
WorkingSet := WorkingSet U {v}
send(mp,, : mp,, : NETPROBEREQUEST(0, v))

(1)
Rule (2) specifies the reaction of a NetProber ele-
ment 7p,, upon receiving a NETPROBEREQUEST mes-
sage from another NetProber element np,. The re-
action of np, depends upon the level of the NET-

PROBEREQUEST.

receive(np,, : np, : NETPROBEREQUEST(L, v))
if L =0 then

SetOfPairs := Neighbors \ {(u,np,)}

send(mp, : np,, : NETPROBEREPLY(0, v, SetOfPairs))
else

SetOfPairs == {(v,mp,)}

send(mp, : np,, : NETPROBEREPLY(1, v, SetOfPairs))

2)
The third rule describes the reaction of a NetProber
element np,, upon receiving a NETPROBEREPLY mes-
sage from another NetProber element np,,.

fi

receive(mp,, : np,, : NETPROBEREPLY (L, v, SetOfPairs)) A
v € WorkingSet

a = getDistance(NETPROBEREPLY, d)
if L =0 then
(DistanceTable(v))(v) = «
for every (a,mp,) € SetOfPairs do
send(mp,, : mp, : NETPROBEREQUEST(1, v))
WaitSet(v) := SetOfPairs,
OtherNeighbors(v) = SetOfPairs
else
Let {z} = SetOfPairs;
(DistanceTable(v))(z) = o
WaitSet(v) := WaitSet(v) \ {mp,}
if WaitSet(v) = @ then
I :== {v}U{s : s €& OtherNeighbors(v) A
Neighbors(s) = L}
m := min{(DistanceTable(v))(y) : y € '}
cn = selection(I', m)
send(mp,, : u : SUGGESTION(v, cn))
WorkingSet := WorkingSet \ {v}
OtherNeighbors(v) := L

®)

Rule (3) deserves some comments. In the action
part of this rule, we use some generic functions:

e getDistance: this function will return the dis-
tance according to the metric used as QoS pa-
rameter. It might be the number of hops, the
latency, etc..

In the case the metric specified is the number of
hops, this function will retrieve the IP_TTL value
from each message NETPROBEREPLY given as ar-
gument.

In the case the metric used is the latency, this
function will return an estimate of the round-
trip-time and requires that we record the (local)
time when a NETPROBEREQUEST is sent to some
other NetProber element.

e selection: this function is used to select one of
the nodes with minimum distance from the set IT'.

Remark The algorithm presented here explores
only the neighbors of a neighbor. The change required
to enable the probing of nodes at a certain depth is
obvious and is ommitted here for simplicity.

4. Conclusion

In this paper, we introduced the notion of “good-
ness”, which can be used to measure the quality of
an overlay network given a certain metric. Using this
formal characterization, we presented NetProber, a
simple, fully distributed and scalable algorithm that
allows any overlay network that uses it to adapt to-
wards the “goodness” measure.

The QoS parameter that we mainly used in our pre-
liminary simulations was the hop count. In most of the
currently obtained results, we observe that the overlay
network progessively becomes close to the underlying
IP network. These results are encouraging, thus we
plan to perform more simulations for an effective eval-
uation of the NetProber algorithm.

Acknowledgements

We would like to thank all the members of the
Tuesday meeting at the UCL/FSA/INGI for their
valuable comments. We also thank Iyad Al Khatib
and Thomas Sjoland, and Sameh El-Ansary from
IMIT/LECS/DCS for their contribution.

References

[1] The Gnutella Protocol Specification v0.4.
http://www.clip2.com/GnutellaProtocol04.pdf.

[2] Jxta v1.0 protocols
http://www. jxta.org, June 2001.

[3] I. Clarke, O. Sandberg, B. Wiley, and T. Hong.
Freenet: A distributed anonymous information stor-
age and retrieval system. In Proc. of ICSI Workshop
on Design Issues in Anonymity and Unobservability,
July 2000.

[4] John Kubiatowicz, David Bindel, Yan Chen, Steven
Czerwinski, Patrick Eaton, Dennis Geels, Ramakr-
ishna Gummadi, Sean Rhea, Hakim Weatherspoon,
Westley Weimer, Chris Wells, and Ben Zhao.
Oceanstore: An architecture for global-scale persis-
tent storage. In Proceedings of the Ninth international

specification.

(10]

(11]

(12]

(13]

(14]

Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2000),
November 2000.

Gopal Pandurangan, Prabhakar Raghavan, and Eli
Upfal. Building low-diameter p2p networks. In 42th
IEEE Symp. on Foundations of Computer Science,
2001.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network.
Technical Report TR-00-010, Berkeley, CA, 2000.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network.
In Proc. of ACM SIGCOMM, August 2001.

S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-aware overlay construction and server
selection. In Proc. of IEEE INFOCOM, June 2002.
To be published.

S. Ratnasamy, S. Shenker, and I. Stoica. Routing al-
gorithms for dhts: Some open questions. In Proc. of
the 1st International Workshop on Peer-to-Peer Sys-
tems, Cambridge, MA, USA, June 2002.

M. Ripeanu, I. Foster, and A. Iamnitchi. Map-
ping the gnutella network: Properties of large-scale
peer-to-peer systems and implications for system de-
sign. IEEE Internet Computing Journal, 6(1), Jan-
uary/February 2002.

Matei Ripeanu. Peer-to-peer architecture case study:
Gnutella network. In Proceedings of International
Conference on Peer-to-peer Computing, Linkoping,
Sweden, August 2001.

A. Rowstron and P. Druschel. Pastry: Scalable, de-
centralized object location, and routing for large-scale
peer-to-peer systems. Middleware, November 2001.

I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for Internet applications. Technical Re-
port TR-819, MIT, March 2001.

B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location
and routing. Technical Report UCB/CSD-01-1141, U.
C. Berkeley Technical Report, April 2000.

