
P2PS: Peer-to-Peer Development Platform for Mozart
�

ValentinMesaros
�
, BrunoCarton

�
, andPeterVanRoy

�
�

CSDepartment,Universit́e catholiquedeLouvain,Louvain-la-Neuve,Belgium�
valentin, pvr � @info.ucl.ac.be�

CETIC,Charleroi,Belgium bruno.carton@cetic.be

Abstract. Recently, developmentof peer-to-peer(P2P)applicationshasbeen
giving a paramountattentionmostly dueto their attractive featuressuchasde-
centralizationandself-organization.Providing theprogrammerwith the “right”
platformfor developingsuchapplicationsbecamea challenge.In this paperwe
describethe functionalityof P2PS, a platform for developingP2Papplications
in Mozart.TheP2PS platform provides the developerwith a meansfor build-
ing andworking with P2Poverlayapplications,offering differentprimitivesand
servicessuchasgroupcommunication,efficient datalocation,anddealingwith
highly dynamicnetworks.P2PS implementsTango,an efficient algorithmfor
constructingstructuredP2Psystems.It is deliveredasa library andalreadymade
public,beingusedasunderlyingstructurefor differentP2Papplications.

1 Introduction

With theadventof popularpeer-to-peer(P2P)applicationsandsystemssuchasGnutella
(gnutella.wego.com) andNapster(www.napster.com), thedevelopmentof P2Psystemshas
becomeimportantandevena researchtopic.Themainreasonsfor this “rush” is dueto
thepracticalandusefulfeaturesandobjectivesof P2Pcomputing,e.g.,scalability, self-
organization,decentralization.Thevery ideabehindthepeer-to-peerconceptis thefact
that the processesparticipatingin a distributedcomputingcanexchangeinformation
directly, without passingthrougha centralpoint.Thus,they becomepeers. A peercan
be client, server, and router at the sametime. Generallyspeaking,peershave equal
capabilitiesandeventuallyequalresponsibility.

In thispaperwepresentsomeof ourongoingwork within theframework of extend-
ing Mozart/Oz(www.mozart-oz.org) to reflectnew programmingabstractionsthat use
differentdistributedalgorithmsin orderto offer P2Pabilities.Wedescribethefunction-
ality of theP2PS [1] peer-to-peerdevelopmentplatform.TheP2PS platformprovides
thedeveloperwith theability of building andworking with P2Poverlayapplications,
offering him differentP2Pprimitivesandservicessuchasgroupcommunication,ef-
ficient datalookup,andfault-resilience.Although independentof the underlyingP2P
technology, P2PS currentlyonly implementsTango[2]. Tangois a peer-to-peeralgo-
rithm that we developedto betterstructurerelative exponentialnetworks to increase
�

This work was fundedat UCL by the InformationSocietyTechnologiesprogrammeof the
EuropeanCommission,FutureandEmerging TechnologiesunderIST-2001-33234PEPITO,
andatCETICby theWalloonRegion (DGTRE)andtheE.U. (ERDFandESF).

theirscalability. It extendsandimprovesChord[3], andthusit canbeincludedinto the
categoryof structuredP2Psystems(seeSection2).

Mozartalreadyprovidesthe programmerwith an advancedinterfacefor develop-
ing distributed applications.However, the underlyingdistribution layer of Mozart is
basedon a client-server modelwhich mayleadto scalabilityproblemswith respectto
thenumberof processesinvolvedin thecomputation.Thereis ongoingwork [4,5] to
reducesomeof theseproblems.On the otherhand,theP2PS developmentplatform
inheritsall its functionality from theP2Palgorithms.For example,it canprovide full
connectivity (though,multi-hop)betweenall nodeswithin the network, andthis with
a logarithmicnumberof physicalconnectionspernode.Moreover, thelooselycoupled
modeltogetherwith themanagementof highly dynamicnetworksmake of P2PS the
right choiceto developP2Papplicationsin Mozart.

Relatedto ourwork, thereexistsseveralresearchprojectsfor P2Pdevelopmentplat-
form. Oneis the Chordproject(www.pdos.lcs.mit.edu/chord) written in C++ andbased
on the Chordalgorithm.Anotherplatform is FreePastry(freepastry.rice.edu) written in
Java andbasedon the Pastry[7] algorithm.As P2PS, both platformsarebasedon a
structuredP2Psystemandaim to build scalable,robustdistributedsystems.They both
offer a programminginterfacebasedon the“commonAPI” [6]. P2PS providesrather
a combinationbetweenlayerstire 0 (i.e., key-basedrouting)andtire 1 (e.g.,multicast
andbroadcast)of the “commonAPI”. P2PS aswell asChordprojectandFreePastry
arein ongoingresearchandthey all threearemoreor lesssimilar with respectto the
servicesthey offer. Onething thatdifferentiatethemfrom oneanotheris theprogram-
ming languagethey arewritten in. Hence,we believe that,giventheexpressivenessof
Mozart/Oz,P2PS representsanattractivechoicefor writing P2Papplicationswith.

JXTA [8] andJXTAnthill [9] aretwo otherdevelopmentplatformsfor P2Pappli-
cations.JXTA definesa setof basicprotocolsfor a numberof P2Pservicessuchas
discovery, communication,andpeermonitoring.JXTAnthill is written on top of JXTA
andit implementsalgorithmsrootedin complex adaptivesystems,basedon thebehav-
ior of ants.ThedifferencebetweenP2PS andthesetwo platformsis mostlybasedon
theP2Palgorithmsthey eachimplement.While P2PS is basedon algorithmsoffering
strongdatalookupguarantees,this is not thecasefor JXTA andJXTAnthill.

The remainderof this documentis organizedas follows. We continueby briefly
recalling the principlesof structuredP2Psystems.In Section3 we presentthe main
functionalityprovidedby P2PS. In Section4 we describethe internalarchitectureof
P2PS. In Section5 we show how to write a simpleapplicationfor P2PS, andin Sec-
tion 6 wedescribea morerealisticapplicationthatusesP2PS, andthenconclude.

2 Structured P2P Systems

In this sectionwe briefly recall theprinciplesandnotationsof thestructuredP2Pnet-
works.Unlike unstructuredP2Psystemslike Gnutella,whoseoverlay topologyis ad-
hoc,structuredP2Psystemsorganizetheir overlayby following well specifiedrulesin
order to improve overall efficiency. A key challengein building P2Psystemsis pro-
viding meansfor efficient locationof informationdistributedacrossa largenumberof
processes(or nodes)of a highly dynamicnetwork. We take theChordalgorithmasa

casestudysinceChordis oneof thefirst P2Palgorithmsbasedontheideaof Distributed
HashTable– DHT, andalsobecauseChordandTangohavemany commonalities.

Therearethreemaincharacteristicsof aP2Pstructuredsystem.First is thefactthat
it is DHT-based,wherekey#valuepairsareassociatedto nodesin theoverlaynetwork
dependingon the “distance”betweenthe key id andthe nodes’ids. (Hereinafter, we
will usethe term nodeto refer both to the nodeitself and to its identifier underthe
hashfunction,asthe meaningwill beclearfrom the context.). Both, nodesandkeys,
take valuesin the sameidentifier space.In the caseof Chord,the identifier spaceis
a virtual ring within which hashednodeand dataitem key identifiers arespreadby
usinga consistenthashing.Secondis the fact that theoverlaynetwork is well defined
in orderto achievelogarithmickey lookup.With theadventof theDHT-basedsystems,
the main procedurein the P2Psystems,i.e., the key lookup, is provided with clear
guarantees.For instance,while in Gnutellaa flooding-basedalgorithmis used,leading
to network resourcewaste,in ChordandTangothelookupfor a key will not takemore
than a certainmaximumnumberof hopsand messages,i.e., �
	��������� , where � is
themaximumnumberof nodesin theoverlay. Third is thesystem’s resilienceto node
failuresandits ability to self-organizefaceto the network’s dynamics.That is, when
nodesjoin or leavethenetwork, thenodespointingto themwill adapttheirlocalrouting
tablesin orderto guaranteeoverall efficient lookup.Furthermore,sincethe systemis
totally decentralized,thereis no risk for singlepointsof failureto occur.

In Chordeachnodehasa predecessoranda successor, representingreferencesto
thepreviousandrespectively thesubsequentnodein theidentifierspace.A key is stored
at thenodesucceedingtheid of thatkey onthecircularidentifierspace.Thus,thenaive
lookup procedurefor a certainkey reducesto looking for the first nodewhoseid is
greaterthan,or equalto, the id of thatkey alongtheidentifierspace,goingclockwise.
To speedupthelookupprocess,eachnodemaintainssupplementaryreferences(called
fingers) to someothernodesinsidea routingtable. Givenanidentifierspaceof size � ,
besidethereferencesto its predecessorandsuccessor, eachnodein theChordsystem
stores������ fingers.Notethatin structuredP2Psystemsthereis a tradeoff betweenthe
sizeof theroutingtableateachnodeandthemaximumnumberof hopsarequestwould
takewhenlooking for a key.

3 Functionality

In this sectionwe presentthemainfunctionalityprovidedby our P2Pplatform,called
P2PS: Peer-to-Peer System. The main functionality of P2PS is offeredvia the class
P2PS.p2pServices. TheP2PS library providesthedeveloperwith thepossibilityof
building andworking with P2Poverlayapplications,offering differentP2Pprimitives
andservices.P2PS is providing thedistributedpeer-to-peerapplicationswith a means
to organizethemselvesin largescalestructuredoverlaynetworksaswell asproviding
themwith managementandcommunicationprimitiveswhosecostsevolve logarithmi-
cally with thesystemsize.AlthoughimplementingtheTangoalgorithm,P2PS offers
an API that canapply to any structuredP2Psystem.Thus,the programmerdoesnot
haveto worry abouttheunderlyingdetails.For moreinfo on theAPI, thereadershould
referto theP2PS tutorial [1].

Themainfunctionalityprovidedby theP2PS library canbesummarizedasfollows:
network managementprimitivessuchascreate,join andleave a network, communica-
tion primitivessuchasone-to-one,broadcastandmulticast,andmonitoringprimitives.
With P2PSweintendto providebasicP2Pprimitivesontopof whichmorespecialized
serviceswill be built. Dictionary functionality suchaslooking for the responsibleof
a key is not providedasa basicprimitive in P2PS. Instead,themainbasicprimitives
aresendingandreceiving a messagefrom onenodeto another. Nevertheless,dictio-
nary operationscanbe immediatelyprovidedby usingthe communicationprimitives
offeredby theP2PS library. Furthermore,we have undergoingresearchto extendthe
functionalityof P2PS.

3.1 Create a Network

This functionalityprovidestheprogrammerwith thepossibilityto createaP2Poverlay
network. It will createthe first nodeof a network. What this actually meansis the
fact that anAccessPoint is createdfor this node.(For the descriptionof the access
point, seeSection4.1.) In orderto createa network in P2PS, onewill usethemethod
createNet. This methodcan be featuredwith different overlay network and node
parameters(e.g.,the maximumnumberof nodesin the overlay, the id of this node),
aswell aswith parametersrelatedto thelocal accesspoint (e.g.,IP andport number).
Then,aftercreatinga peernode,its accesspoint canbepublished,thusallowing other
nodesto connectandjoin theoverlaynetwork. Furthermore,thenodeis providedwith
messageandeventinputstreamsonwhichmessagesfrom othernodesandrespectively
differentnodeandnetwork eventswill eventuallybeaccessible.

3.2 Join a Network

Whenjoining an overlay network, a peernoden needsto have the knowledgeof an
AccessPoint of anotherpeernodep alreadypresentin therespectiveoverlaynetwork.
Theunderneathprotocolswill actuallyjoin n to thenetwork via thenodep. Notethat
nodep servesonly asanentrypoint to thenetwork for noden. Generally, theposition
of a nodewithin thesystemdoesnot dependon theentrypoint it usedto get into the
network. The systemwill self-organizein order to guaranteeoverall efficiency (see
Section4.2 for details).In orderto join a network in P2PS, onewill usethe method
joinNet. This methodcanbefeaturedwith differentnodeparameters(e.g.,the id of
this node),as well as with parametersrelatedto the local accesspoint (e.g., IP and
port number).As any othernodein the overlay network, a new joined nodewill be
associatedanaccesspoint. Furthermore,onceinsidethenetwork, a nodemayreceive
messagesfrom other nodesfrom the network, and nodeand network eventson the
associatedmessageandrespectively eventinputstreams.

3.3 Leave a Network

Leaving anoverlaynetwork meansimplicitly disconnectingthisnodefrom all theother
nodesit is connectingto in the overlaynetwork. Although,generally, a P2Pnetwork

toleratesnodefailures,it is expectedthata nodedoesa gracefullyleave.Thus,under-
neath,a nodewill run a simpleprotocolto disconnectit from its neighbors.In orderto
leave a network in P2PS, onewill usethemethodleaveNet. This will terminatethe
messageandtheeventstreams.

3.4 Message Sending and Receiving

P2PS providesend-to-endcommunicationprimitives.That is, sendingmessagesfrom
onepeernodeto anotherthroughouttheoverlaynetwork. Dueto its organization,the
systemperformsefficientkey basedrouting.Thus,amessagefrom anodes to anoded
is routedthroughouttheoverlaynetwork accordingwith thecorrespondingkey lookup
procedure,whered is consideredakey. In P2PS themessagesendingandreceiving are
asynchronous.Nevertheless,thereliablesendcanbemadesynchronous.In thefollow-
ing wedescribehow to sendmessagesby usingdifferentcommunicationprimitives.In
all cases,receivingamessageatanodeimpliesreadingthemessageinputstreamatthat
node.Themessagesaddressedto anodewill appearon its associatedmessagestream.

One-to-one communication. This primitive is to beusedto sendmessagesfrom one
nodeto anotherone, throughoutthe overlay network. It is importantto note that in
P2PS one can chooseto senda messageeither to the noderesponsiblefor the key
with valued, or directly to the nodewhoseid equalsd. While in the formercasethe
messagewill eventuallyalwaysreachits destination(sincetherewill alwaysbea node
responsiblefor any key), in the latter thedestinationmaysimply not bepresent.Both
flavors of messagedelivery areusefulin practice.On the otherhand,onecanchoose
betweena best-effort sendor a reliablesend.In thecaseof a best-effort send,although
generallythemessagewill reachits destination,therearesituationswhenthemessage
maybe lost, e.g.,dueto the overlaynetwork dynamics.In the caseof a reliablesend
themessagewill bedeliveredto thedestination;otherwise,its losswill besignaledto
the sender. To sendone-to-onemessagesin P2PS, onewill usethe methodsend for
best-effort sendandthemethodrsend for reliablesend.

One-to-many communication. AnothercommunicationprimitivethatP2PS provides
is one-to-many, wheresimpleandefficient broadcast andmulticast is provided.
Both protocolsemployedarebasedon anidea[10] thatexploits thetreestructureof a
Chord-like system.In thecaseof thebroadcast,themessageis sentto all thenodesin
thenetwork. In thecaseof multicast,themessageis sentto a givenlist of nodes,i.e.,
explicit multicast.As in thecaseof one-to-oneprimitive, in thecaseof multicastone
canchooseto sendthemessageeitherto nodes’responsibles,or directly to thenodes
whoseidsequalthosein thedestinationlist.

Send to successor. To increaseits resilience,anapplicationmight decideto replicate
thecontentstoredatanodeto someof thenode’ssuccessors.ThemethodsendToSucc
canbeusedto senda messageto a numberof successorsof a node(whoeverthey be).

3.5 Monitoring

In a dynamicnetwork, asin P2Poverlaynetworks,beingawareof the statusandthe
changeswith respectto thepeernodeandthenetwork mightbeveryusefulfor theup-
perlyingapplication.A goodexampleis theapplicationrunningon nodeswith limited
resources.Hence,in P2PS we decidedto provide a setof eventson the event input
streamassociatedwith the peernode.Theseeventsindicatechangeson the connec-
tionswith thenode’s neighbors.This way, for example,if thesuccessorof a nodehas
changed,theapplicationmaydo replicationon thenew successor.

Anotherway of monitoringa nodeis offeredby the methodgetStatistics. It
providesa setof information– mostof it in theform of counters– aboutthestatusof
thenode.For example,onecanobtaininformationaboutthefollowings:thenumberof
incomingandoutgoingconnections,thenumberof dataandcontrolmessagessentby
thisnode,thenumberof dataandcontrolmessagesforwardedby thisnode.

4 Architecture

Services
Core
Com

Mozart VM

Peer−to−peer application
Msg Evnt

P2PS

Fig. 1. Thethree-layerarchitectureof aP2PS node,andits interactionwith theapplicationand
thetransportmodule(hereprovidedby thedistributedlayerof Mozart).

TheP2PS library is organizedin threelayers:COM, Core, andServices (seeFig-
ure1). They correspondto P2Pservicesprovidedto theapplication:structuralopera-
tions in orderto preserve overlaynetwork properties,andmessagesending/receiving
andchannelestablishmentoperations.

4.1 COM Layer

The COM layer is in charge with interfacing with the underlyingphysicalnetwork.
Basically, COM providesthe Core layer with communicationfunctionality througha
commonAPI, regardlesstheunderlyingtransportprotocolemployed.Thefunctionality
providedby COM is: accesspoint creation,connectionestablishment,basiccommuni-
cationprimitives,andfaultdetection.

Access point creation. We defineanaccesspoint to beanaddressableentrypoint of
a node.It is theCOM layerwho definesthe form andthemeaningof anaccesspoint.
Moreover, therepresentationof anAccessPointwill haveameaningonly to theCOM
layer. It can,for example,be definedasanipAddr/socketNr pair, but its definition
canalsobesecurity-flavored.Theaccesspointcreationprimitiveconsistsin creatingan
addressableentrypoint for a peernode.Then,a peernodecanpublishits accesspoint,
allowing remoteconnectionsto it, andthusproviding an accesspoint to the overlay
network itself.

Connection establishment. Theconnectionestablishmentfunctionalityofferstheprim-
itivesconnect anddisconnect for point-to-pointconnectingto andrespectively dis-
connectingfrom a node,givenits AccessPoint.

Basic communication primitives. The basiccommunicationprimitivesprovided are
send messageandreceive message.They arepoint-to-pointprimitivesproviding re-
liable transferoverconnectionsestablishedvia anAccessPoint.

Fault detection. Thefaultdetectionprimitivesprovideameansfor detectingtwo types
of network anomaliesrelative to point-to-pointconnection,i.e., permanentfaultsand
temporaryfaults.Giventhehigh dynamicsof a P2Pnetwork, this functionalityis very
important.For thisend,P2PS usesindirectly thedistribution functionalityof Mozart.

4.2 Core Layer

An overlaynetwork topologycanbeviewedasa graphcomposedof arcsandnodes.
TheCore layerprovideshigh-level connectivity primitivesbetweennodes,thusallow-
ing to addandremovearcsto andrespectively from anode.TheCore layer, asits name
indicates,is thecentralcomponentof theP2PS library. It implementstheTango[2] al-
gorithm.Its purposeis threefold:implementnodejoin andleavemechanisms,routekey
basedmessagesto their responsibles,andmaintaintheroutingtableandthesuccessor
list regardlessthenodesjoining andleaving, thusguaranteeingoverlayefficiency.

Joining/leaving a network. Givenanentrypoint to thesystem(i.e.,AccessPoint),
the join mechanismconsistsin finding the right placefor the joining nodewithin the
overlaynetwork (i.e., betweenits successorandpredecessor),andestablishinga com-
municationchannelwith its neighbors.Obviously, thepredecessorandsuccessorof the
joining nodewill beaffectedby thejoin operationandthereforthey mustupdatetheir
referencesin orderto reflectthenetwork change.Theparticularityof theimplemented
distributedjoin is thefactthatit is atomic.Indeed,oncethejoining node� haslocated
its successor� , it asks� to insertit into thesystem.If a nodereceivesaninsertionre-
questwhile insertinganothernode,it will delaythe requestuntil thecurrentinsertion
hasfinished.Furthermore,a nodecanperforman insertiononly afterbeingitself cor-
rectly insertedinto theoverlay. Theleave operationis muchsimplerandconsistsonly
in advertisingits connectedpeersabouttheleave,anddisconnectingfrom them.

Routing messages. The messageroutingalgorithmis basedon the key lookupprim-
itive of the P2Palgorithmemployed (i.e., Tangoin the caseof P2PS). It consistsin
handingtheincomingmessageto theupperlayerif it reachedits destination(i.e., if the
receiverpeeris responsibleof themessageidentifier)or forwardingthemessageto the
closestpeerentryof theroutingtable,accordingto theroutingmetricused.

Topology maintenance. Anotheroperationis overlay topologymaintenance,or rout-
ing tablemaintenance.This procedureis run at eachnodeandconsistsin maintaining
connectionsto well definedneighborsin orderto ensurecertainglobalguarantees(e.g.,
a lookup for a key will not take morethana certainmaximumnumberof hops).In-
steadof correctingtheroutingtableby probingperiodicallytheneighbors,therouting
tableof a nodein P2PS is correctedwhenthepeersareactuallyusingthenetwork (as
describedin [11]). While this economicway is well suitedfor maintainingtherouting
table,it is not for maintainingthesuccessorlist of a node.Sincethereasonto keepthe
successorlist is to preserve thenetwork coherence(i.e., whenthesuccessorof a peer
hasfailed,thepeerhasto refer to thenext peerin thesuccessorlist), a peershouldbe
notified immediatelyaboutall modificationsof the � next succeedingpeers(� is the
lengthof thesuccessorlist).

4.3 Services Layer

TheServices layer is a kind of wrapper, building up theraw primitivesofferedby the
Core layer;operationsneededto implementpeer-to-peerapplications.Theseoperations
canfit into threecategories.First is theoverlaynetwork managementwhichcomprises
systeminitialization, createconnectionaccess,andsystemjoin andleave operations.
Secondarethecommunicationprimitivesat theoverlaynetwork level which comprise
one-to-onemessagesend,andmessagebroadcastandmulticastoperations.Third are
themonitoringprimitives.

Theapplicationcaninteractwith theServices layerby invoking thecorresponding
methodsdirectly aswell asby simply readinginformationon the two availableinput
streams:message andevent associatedwith eachpeernode.Themessageandevent
streamsareawayof asynchronouslyobtaininginformationaboutthereceivedmessages
andrespectively thenodeandnetwork events.

5 An Example Using P2PS

Hereis a simpleexampleof a P2Papplicationcomposedof threepeersthat usesthe
P2PS library. The systemis composedof threenodesnode1, node2, andnode3,
wherenode2 andnode3 join thesystemthroughnode1 andrespectivelynode2. In
thisexamplenode3 sendsanone-to-many messagetonode1 andnode2, andanone-
to-onemessageto theresponsibleof key 42. For moreclarity, wepurposelyomittedthe
exceptionhandling.Thecoderunsdirectly in theOPI– OzProgrammingInterface.

Thefirst nodeof a P2Psystemis always“special”.Actually, it representsa system
by itself. Whencreatinganetwork (i.e., thefirst node)onecanspecifythenetwork pa-
rameters.In ourexample,wedecidedto work with thedefaultnetwork valuesprovided

by thesystem.Nevertheless,we specifyparametersfor the nodeandits accesspoint.
Thatis, we indicatewewantnodeId=1 andthatit shouldwork on port number3001.
Than,weruna loopoverthemessagestreamanddisplaysthemessagesit receives.The
following is thecodeimplementingnode1.

declare /* node1 */
[P2PS] = {Module.link [´ x-ozlib://cetic_ucl/p2ps/P2PS.ozf´]}

% Create the first node (with id 1) in the P2PS network.
OP2PS = {New P2PS.p2pServices

createNet (nodeConfig: nodeConfig(nodeId:1)
apConfig: apConfig(pn:3001))}

% Get the message stream and display each message received.
for M in {OP2PS getMsgStrm($)} do {Show M} end

Then,we createnode2 with nodeId 16. This nodejoins thesystemvia node1,
specifyingits remoteAccessPoint asthe IP addressandport number. Furtheron, it
runsa loop to wait anddisplaysthe messagessentto this node.The following is the
codeimplementingnode2.

declare /* node 2 */
[P2PS] = {Module.link [´ x-ozlib://cetic_ucl/p2ps/P2PS.ozf´]}

% Build an access point representation for the node to join to.
RAP = {P2PS.address2ap "127.0.0.1" 3001}

% Create a node with id 16 and join the network, using RAP.
OP2PS = {New P2PS.p2pServices

joinNet (remoteAP: RAP
nodeConfig: nodeConfig(nodeId:16)
apConfig: apConfig(pn:3002))}

for M in {OP2PS getMsgStrm($)} do {Show M} end

Finally, wecreatenode3withoutspecifyingits nodeId; thenodewill beprovided
with a randomid. This nodechoosesto join the systemvia node2, specifyingits
addressand port number. Note that it could have chosento join via any other node
within thenetwork.Furtheron,it sendsanone-to-onemessageto theresponsibleof key
42 (which canactuallyendup to any of node1 or node3), anda multicastmessage
to node1 andnode2. Thefollowing is thecodeimplementingnode3.

declare /* node3 */
[P2PS] = {Module.link [´ x-ozlib://cetic_ucl/p2ps/P2PS.ozf´]}

RAP = {P2PS.address2ap "127.0.0.1" 3002}

OP2PS = {New P2PS.p2pServices joinNet (remoteAP: RAP)}

{OP2PS send (dst:42 msg:anOzValue toResp:true)}
{OP2PS multicast (dst:[1 16] msg:hello)}

6 An Application Using P2PS

Therearedifferentapplicationsthathave beendevelopedwith P2PS. Someexamples
(http://renoir.info.ucl.ac.be/twiki/bin/view/INGI/Peer2PeerSystem) arePostIt,P2P-Matisse,
andCommunity-Panel.In thissectionwedescribetheCommunity-Panel.

Fig. 2. TheCommunity-PanelGUI.

Softwaredevelopmentis rarelyasolotask.Thedevelopmentprocessof asoftware,
startingfrom the conceptualdesignto the codeimplementation,is the concernof a
teaminvolving a lot of peoplenot necessarilylocatedat thesameplace.Despiteof its
benefits,collaborationis time consuming.Indeed,somestudiesreveal that theefforts
dedicatedto collaborationamongdevelopersleave lessthanhalf of theworkdayto do
any realcoding.Collaborative toolscanhelp to increasethepartof theday to do any
realcodingwhile still supportinga high level of collaboration.Sincefrom theindivid-
ual developer’s perspective the IDE (IntegratedDevelopmentEnvironment)is where
codingtake place,why not includingcollaborative codeeditioncapabilitiesalongside
theeditor, compileranddebugger?

TheCommunity-Panel,comingwith thepeer-to-peerfacilitiesprovidedby theP2PS
library, is a first steptowarda collaborative IDE. Its mainobjective is to gatherOz de-
velopersconcernedwith a commonproblemin onecommunity, andprovide thecom-
munitywith toolsfor real-timecollaborativeedition.

Thetargetedfunctionalitiesof theCommunity-Panelarethreefold.First, theappli-
cationprovidesuserswith communitymembershipinformation.This informationcan
bepartialor complete,regardingthesizeof thecommunityandscalabilityissues,but
canbeextendedat theuser’s request.Second,theapplicationfacilitatesthecommuni-
cationbetweendevelopersby supportingchat-likeandinstantmessagingfacilities.This
allows to meetappropriatedcommunityor personaccordingto theusermatter, by in-
volving socialconnectionsvia thefriendsmanagementtools.Finally, theCommunity-
Panelprovidesa developingframework for exchangingcodein text/binaryformatbut
alsolanguageentity. For instance,onecanimagineto developanapplicationby adopt-

ing a componentbasedarchitecturewheretheCommunity-Panelplaystheroleof real-
timecomponentconnector.

FromFigure2 onecanseethat theGUI is composedof 3 areas:themembership,
thereceivedmessages,andthesubmit.Themembershipareadisplaysall theavailable
groupsandtheconnectedusers.Thereceivedmessagesareadisplaysall themessages
received during the session.The submit areais composedof a text box allowing to
write amessageandto attachsomeOz-code.Oncetheuserreceivedamessagewith an
attachment,shecanretrieve thecorrespondingOz-codeby clicking on Attachment in
thereceivedmessagesarea.TheretrievedOz-codewill beinsertedin thecurrentbuffer
of theOPI, justafterthecursor’sposition.

Thefriendsmanagementtoolsandthelanguageentitysharingarenotyetsupported
but this doesnot prevent the usageof the Community-Panel.We have developedthe
corefunctionalitiesallowing afirst experimentationoncollaborativeIDE.

7 Conclusion

This documentpresentspart of our ongoingwork within the framework of extending
Mozart/Ozwith new programmingabstractionsto offer P2Pabilities.Throughoutthe
documentwedescribedP2PS, aP2Pdevelopmentplatformfor Mozart.Wefocusedon
its functionalityandon its architectureaswell ason how to write simpleapplications.
TheP2PS library is developedin Mozart/Ozandit implementsTango,a DHT-based
algorithm.Fromits functionality, onecanseethatP2PS is simpleto useandveryprac-
tical to constructandwork with largescaledistributedapplications;thustakingadvan-
tageof theprovidedP2Pservicesandprimitives.Furthermore,giventheexpressiveness
of Mozart/Oz,webelievethatP2PS is anattractivechoicefor developers.

Thefeedback– sinceoneyearnow from its first release– we have beenreceiving
from differentdevelopersusingP2PS allow us to continuouslyimprove its API and
functionality. TheP2PS library is availableto be(andit is already)usedfor develop-
ing P2Papplicationsaswell asto be extendedwith morespecializedservices.More
encouraging,P2PSwill beusedasadistributedcommunicationenvironmentin further
researchprojectsatUCL andCETIC.

P2PS is the first Mozart/Ozdevelopmentplatform offering primitives for build-
ing P2Papplications.It is deliveredasa softwarepackagecontainingthesourcecode
togetherwith anAPI documentationandanexample-basedusertutorial. Last fall we
madethe public releaseof P2PS on MOGUL (www.mozart-oz.org/mogul); the official
archive of Mozart libraries.Sincethen,P2PS hasbecomeknown to researchersin the
domainof overlaynetworksandP2Psystems,andits websiteis daily visited.

References

1. Carton, B., Mesaros, V.: P2PS: Peer-to-Peer System Library. http://www.mozart-
oz.org/mogul/info/ceticucl/p2ps.html(2003)

2. Carton,B., Mesaros,V.: Improving theScalabilityof Logarithmic-DegreeDHT-basedPeer-
to-PeerNetworks.Euro-Par– InternationalConferenceon ParallelProcessing(2004)

3. Stoica,I., Morris,R.,Karger, D.,Kaashoek,F.,Balakrishnan,H.: Chord:A ScalablePeer-to-
PeerLookupServicefor InternetApplications.ACM SIGCOMM– SpecialInterestGroup
onDataCommunication(2001)

4. Klintskog,E.,Mesaros,V., El-Banna,Z., Brand,P., Haridi, S.:A Peer-to-PeerApproachto
EnhanceMiddlewareConnectivity. OPODIS– InternationalConferenceOn PrinciplesOf
DIstributedSystems(2003)

5. Klintskog, E., Brand, P.: ExtendedDistribution Subsystem.D4.6 PEPITO deliverable
http://www.sics.se/pepito(2004)

6. Dabek,F., Zhao,B., Druschel,P., Kubiatowicz, J.,Stoica,I.: Towardsa CommonAPI for
StructuredPeer-to-PeerOverlays.IPTPS– InternationalWorkshoponPeer-to-PeerSystems
(2003)

7. Rowstron,A., Druschel,P.: Pastry:Scalable,DecentralizedObjectLocation,andRouting
for Large-ScalePeer-to-PeerSystems.IFIP/ACM Middleware– InternationalConference
onDistributedSystemsPlatforms(2001)

8. Traersat,B., Abdelaziz,M., Pouyoul,E.: ProjectJXTA: a Loosely-ConsistentDHT Ren-
dezvousWalker. WhitePaper, SunMicrosystems,Inc. (2003)

9. Russo,F.: JXTAnthill. MasterThesis.Departmentof ComputerScience,Bologna,Italy
(2002)

10. El-Ansary, S.,Onana,L., Brand,P., Haridi, S.: Efficient Broadcastin StructuredP2PNet-
woks.IPTPS– InternationalWorkshopon Peer-to-PeerSystems(2003)

11. Onana,L., El-Ansary, S., Brand,P., Haridi, S.: DKS: A Family of Low Communication,
ScalableandFault-TolerantInfrastructuresfor P2PApplications.IEEECCGRID– Interna-
tionalSymposiumon ClusterComputingandtheGrid (2003)

