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Abstract

High scalabilityin Peerto-Peer(P2P)systemshasbeenachiezed with the emegenceof
the networks basedon Distributed HashTables(DHT). Most of the DHTs canbe regardedas
exponentialnetworks. Their network sizeevolvesexponentiallywhile the minimal distancebe-
tweentwo nodesaswell asthe routingtablesize,i.e., the degree,at eachnodeevolve linearly
or remainconstant.In this paperwe presenta modelto bettercharacterizenostof the current
logarithmic-dgreeDHTs. We expresshemin termsof absolute andrelative exponentialstruc-
turednetworks. In relative exponentialnetworks, suchasChord,whereall nodesarereachable
in atmostH hops thenumberof pathsof lengthinferior or equalto H betweertwo nodeggrons
exponentiallywith thenetwork size.We proposghe Tango approacho reducethisredundang
andto improve otherpropertiesuchasreducingthelookuppathlength.We analyzerango and
shaw thatit is morescalableghanthecurrentlogarithmic-dgreeDHTs. Givenits scalabilityand
structuringflexibility, we choseTango to bethealgorithmunderlyingour P2Pmiddlevare.

1 Intr oduction

Over the pastfew years,Peefto-Peer(P2P)networks have becomean importantre-

searchopic dueto theirinterestingcharacteristics/potentiadsichasself-oiganization,
decentralizatiorand scalability The underlyingprinciple relies on exchangingdata
only betweertheinterestedparties.A P2Pnetwork is principally characterizedy its

structuringpolicy andthelookup protocolemployed.

Notlongaftertheemepgenceof thefirst popularP2Pnetworks,NapsteandGnutella,
it wasrealizedthatscalabilityin thesenetworkswasanimportantissue.P2Pnetworks
basedon DHT (DistributedHashTable)have beenproposedisa solution. Thesenet-
worksareself-omganizedfully distributedandhighly scalable Furthermoregiventhat



eachnodehasa well definedrouting table, the lookup for any node/itemcanbe ac-
complishedwithin a relatively small numberof hops. As the network sizeincreases
exponentially, the maximumlookup lengthaswell asthe routing table size at each
node(i.e., thedegree)increasdinearly like in Chord[1], Pastry[2] and Tapestry{3],
or evenremainconstantike in Koorde[4] andDistanceHalving (DH) [5].

TheDHT based®2Pnetworksarealsocalledstructured networks, sincethey follow
a well definedstructure. A closerlook to their structureallowed us to notice that
mostof thelogarithmic-dgreeDHTs fall into two main catejories,dependingpn the
nodes’view of the network (we deferthe definition of nodes view to Section2). We
call themabsolute andrelative structured exponential networks.

A first contrikution of this paperis the descriptionof amodelto bettercharacterize
the exponentialstructurednetworks as absoluteandrelative. Relatedto this work is
the researctdescribedn [6] wherea modelbasedon the conceptof k-ary searchis
proposedfor reasoningaboutDHT networks. Their model addressesnly relative
structuredexponentialnetworks, while oursis moregeneral addressinghe absolute
networks,too.

Our model allowed us to obsere thatin the relative exponentialstructurednet-
worksthefingersof a nodearenot totally exploited. Hereinafterwe denotethe “fin-
gers”of a noden to be the single-hopconnection®f n, andhencerepresentinghe
entriesin the routingtable of noden. In Section3 we proposean approachthatwe
calledTango, to structuretherelative exponentialnetworksfor increasingheir scala-
bility. Tango reduceghe redundang in the multiplicity of pathsbetweerntwo nodes
of arelative exponentialnetwork and,assuch,it reduceghe pathlengthbetweernthe
nodes. The Tango approachis the secondandthe main contribution of this paper
In Sectiond we compareTango with DKS [7] andwith the DH constant-dgreenet-
work. Note that DKS generalizeChordto allow a tradeof betweenthe maximum
lookuplengthin the network andthe sizeof theroutingtableat eachnode(e.g.,for an
arity of 2, DKS hasthe samestructureasChord).

Theremaindeof the paperis organizedasfollows. We continuewith the descrip-
tion of our modelfor absoluteandrelative logarithmic-dgreestructuredexponential
networks. In Section3 we presenthe Tango approachandits routing policy. In Sec-
tion 4 we analyzethe scalability the pathoverlapandthe symmetrysupportin Tango
andthenwe conclude.

2 Structured exponentialnetwork

In the following we explain the generalbuilding rule of a structuredexponentialnet-
work andwe identify two kinds of networks: the absoluteandtherelative exponential
network. In orderto obtaina morereadabledescriptionwe usethe following nota-
tions: Net; standsfor the exponentialnetwork correspondingdo the it* incremental
building step,andk standgor theexponentialfactor
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Figurel: Thefirst 3 stepsof anexponentiaihetwork with & = 3.

2.1 Building rules

A structuredexponentialnetwork is a network built incrementallyusingwell-defined
steps.t is composeaf nodedinkedtogethewia directededgesaccordingo structur
ing rules,andcharacterizetdy anexponentiafactork whichis thenumberof instances
of network Net; usedto definethesubsequemnetwork Net; ;. As shovnin Figurel,
thenetwork Net; is theinitial network composeaf onenode.At stepi, network Net;
is built by usingk instance®f network Net; ; linkedto oneanother Giventhis build-
ing pattern,onecanobsenethatthe network sizegrows exponentiallywith thenumber
of stepswhile the maximumnumberof stepg(sayhops)neededo reacha nodegrows
linearly with the numberof steps.

Weidentify two methodgor connectingll k instancesf Net;_ ; attheit” step: ab-
soluteandthe relative connectiondi.e., fingers). They leadto absoluteandrelative
structuredexponentialnetwork, respectrely. We illustratebothmethodsor a network
of size 64, built in four steps,and parameterizedby an exponentialfactork = 4.
Eachnodeis identifiedboth numericallyby usinga uniqueidentifier rangingfrom 0
to 63, and graphicallyby using k shapeqi.e., light squarelight circle, bold square
andbold circle). The shapeorganizesthe nodesin the network whereashe size of
the shapedetermineghe network building step. Small shapestandfor instancesf
Net;, mediumshapedor instancef Net,, andlarge shapedor instancef Nets.
Thenetwork instanceof Net; regroupsthefour network instancesf Nets. However,
for simplicity, Net; is notmarkedin thefigures.In orderto distinguishthe fingersof
thereferencenodefrom the othernodeswe representhefingersasnon-graynumbers
whereasghe othernodesarein gray. Moreover, we introducethe & andthe © opera-
tors.In anetwork of size S, we definebothoperatorasm @ n = (m +n) mod S and
men=(m-n+S)modS.

2.2 Absolute structured exponentialnetwork

An absolutestructuredexponentialnetwork is representedh Figure2 (left). In sucha
network, eachnodehasthe sameview of the network. For instanceall nodesseethat
nodegangingfrom 0to 15aresittingin thelargelight squarewvhile nodegangingfrom
48to 51 aresittingin themediumlight squardnsidethelargebold square Thatis, if a
nodeseedhatanodem is sittingin agivenshapehenall thenodesseethatm is sitting
in thatgivenshapeln suchanetwork, attheit* stepthek — 1 fingersof anoden are



L) /T B

on on
10 4
o) oo

2189 [ (C]erier
on ol (on
T
oL/ o

Figure2: (left) Absolutestructuredexponentialnetwork of size64 with k£ = 4. (right)
View of anoden in arelative structuredexponentialnetwork of size64 with & = 4.

pointingto the £ — 1 otherinstance®f Net;_ ;. Moreover, aslong asthereis afinger
of n pointingto eachNet; ;, it doesnot matterto which nodeinside eachNet; ;
n pointsto. For instancejn the network representeth Figure?2 (left), the fingersof
node21 at the third stepcan be ary instanceof nodesa,b,c wherea € [16...19],
be[24...27],andc € [28...31].

2.3 Relative structur ed exponentialnetwork

A relative structuredexponentialnetwork differsfrom anabsoluteoneby the factthat
theview of the network ownedby a particularnodeis relative to its positionwinthin

the network. In Figure 2 (right) we expressgraphicallythe relative approachwhere
we reusethe samegraphicalnotationsasin Figure2 (left) for a network of size64 and
k = 4. Werepresentheview of anoden, andall theothernodesaredenotedelatively

ton. Thatis, anodedenotedas+m correspond$o n & m andanodedenotedas—m

correspond$o n © m. In sucha network, nodessitting in the large light squareare
found at distancedist from the referencenode,with —21 < dist < —6. As two

exampleswe consideffirst n = 21 andthenn = 29. For n equal21, thelargelight

squareontainmmodegangingfrom 0 to 15. Ontheotherhand for n equal29, thelarge
light squarecontainsnodesrangingfrom 8 to 23. Moreover, in arelative exponential
network, a noden hasto point preciselyto the nodesoccupying relatively the same
positionsin the k — 1 otherinstanceof Net; ;. For instancefrom Figure2 (right)

onecannotethatthefingersof nodes29 and21 arethoserepresented Tablel.



Tablel: Fingersof nodes29 and21 for aninstanceof Net, characterizethy k=4 of a
relative structuredexponentialnetwork.

Fingersof nodes

Step | Offset 29 21
-1 28 20
2 +1 30 22
+2 31 23
—4 25 17
3 +4 33 25
+8 37 29

—16 13 5
4 +16 45 37
+32 61 53

2.4 Relation betweenDHT and exponentialnetworks

Mostlogarithmic-dgreeDHT-basedP2Pnetworkscanbe expressectitherin termsof
anabsoluteor in termsof arelative structuredexponentiahetwork. ForinstancePastry
and Tapestrycanbe seenasinstancef the absolutestructuredexponentialnetwork
by instantiatingthe employed alphabeto the shapesusedin Figure2. On the other
hand,Chordand DKS canbe seenasinstance®f the relative structuredexponential
network. For example,asshowvn in Figure?2 (right), consideringhatthe positionof a
noden is the smalllight squarejnsidethe mediumlight squarejnsidethelargelight
squaren pointsto nodesfoundat distanced,2,3;4,8,12;16,32,48~hich correspond
exactlyto thedistancest which anodemustpointin a DKS network characterizethy
anarity of k = 4.

This modelallows usto statethatnetworksbuilt with therelative andthe absolute
approachescaleatthesamerate.Indeed/et S; bethesizeof network Net; and H; be
themaximumnumberof hopsto reachary nodein Net;. Then,for bothstructuresve
have S; = k* S;_1 with S; = 1, H; =i — 1, andanumberof (k — 1) % (i — 1) fingers
ateachnode.

3 Tango: a novel approach for reducing unexploited
redundancy

In arelative exponentialnetwork we canidentify two typesof redundang. Thefirst
oneresultsfrom the commutatve propertyof the additionoperationandfrom thefact
thateachnodeownsthe samefingersrelatively to its position. For example,in Chord,
nodeO canreachnode6 via node4 (6=0+4+2)andalsovia node2 (6=0+2+4). The
secondype of redundang resultsfrom the underutilizatiorof fingers.

To have a clearexplanation,we introducethe notion of positive and negative re-
gionsof a given noden. A nodem is found in the positive region of noden iff
m e n < n ©m, otherwisenodem is foundin the negative region of noden.



Figure3: Theareaseachabldy node21 in at most3 hopsvia node29 andnode37
respectrely. Both areasoverlaponregion[32...39].

We proposeTango, anapproachto addresghe secondtype of redundang, and
thusincreasingnetwork scalability Theregioncoveredin atmosti hopsvia thefarthest
fingeraddedin the positive (resp. negative) region at stepi andthe region coveredin
atmosti hopsvia theclosesfingeraddedn the positive (resp.negative) region at step
i + 1 overlappartially. For example,asshowvn in Figure3, theregionsreachablen at
most3 hopsby node21 via node29 (i.e., from 24 to 39) andvia node37 (i.e.,from 32
to 47) overlap. Let avalid pathbetweertwo nodesin a network instanceNet; beary
pathbetweenthesenodeswhoselengthis at mosti — 1 hops. In arelative network,
all theseoverlapregionsincreasexponentiallythe numberof valid pathsbetweerntwo
nodes. Moreover, the cumulatedsize of the overlap,i.e., the amountof unexploited
redundang in aninstanceof Net; grows exponentiallywith i.

3.1 Tango definition

In orderto preventoverlappingtheregioncomprisetetweerthefarthesfingeradded
in the positive (resp.negative) region at stepi andthe closestingeraddedn the pos-
itive (resp. negative) region at stepi + 1 hasto be equalto the size of the network
instanceNet;. This representshe key ideabehindthe Tango approach. This im-
provementcanbe doneat eachbuilding step. It is graphicallyexpressedn Figure4
for anetwork characterizedy £ = 5. Onecannoticethat Net; ; is composedf 5
blocks. Thereare4 instance®f Net; and1 instanceof Extended Net;, whichis the
network reachabldoy thereferencenodein at mosti hopsby usingthefingersdefined
in Net;.

Let k& andk; bethe numberof fingersaddedin the positive and ,repsectiely,
the negative regionsof a nodeat stepi. We canput &k andk; in relationwith the
exponentialfactor & of the network. Hence knowing thatat eachconstructionstepi
therearek — 1 fingersaddedto anode we obtaink = &k + k; + 1.

Let d;fj (resp.d; ;) bethedistanceatwhichthe 4t positive (resp.negative) finger
of the i*" stepshouldbe placed.Let S;" (resp. S;") be the sizeof the positive (resp.
negative) region of a referencenodeat stepi. By rememberinghat.S; is the network
size at stepi, one canestablishthe equationscharacterizinghe size growth andthe
fingerspositioningin Tango asshowvn in Equationsl. Onecannotethatfor k; = 0,
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Figure4: Network building patternin Tango wherek = 5.

the Tango network correspondso animprovedversionof Chord,and DKS with an
arity k. Thereadercanreferto Section4 for a comparisorbetweenChord,DKS and
Tango.

dy; =j jel.. k] SF =0
dfj:dfjilisi—l JEM...kF],i>2 siizgi{ﬁd:k'i i>1
diy :dz#—l,k?_l i>2 S;i=S8+S; +1 i>0

(1)

3.2 Key-basedouting

The purposeof key-basedroutingis to mapa key to a node. Thus, givena message
taggedwith key Key, theroutingmechanisntonsistdn forwardingthemessagéom
the senderto the noderesponsibleof Key. Let p}t (resp. p,,) be the first nodeen-
counteredn the positive (resp.negative) region of n. Theresponsibilityof anoden is
definedin Equation2.

Besidethe noderesponsibilitythereis thefingerresponsibilitydefiningthenodeto
which a messagshouldbe forwardedto. In Tango we split the fingerresponsibility
of agivenfinger F in negative and positive sides. Than, let the focusednetwork be
aninstanceNet; andlet sz.i’j (resp.Snfj) bethesizesof thepositive (resp.negative)

finger responsibilityas definedin Equations3 and4. The finger responsibilitnyj

1The denominatiorof Tango comesfrom its ability to have positive routing stepsfollowed by negative
routingstepsandvice versa.



of fingerlocatedat positionPij—Lj relatedto thedistancedfj aredefinedin Equationb.
Hence,by usingits finger F; ;, a nodecan cover the region R; ; in at mosti — 1
hops. Onecannotethatfor k£, = 0, the finger responsibilitydefinedin Equation5
correspondo theoneemplgyedin ChordandDKS.

R, = [ne ({kk—glJ *(nepnel))([%-‘ *(pzenel))ean] (2)

Spiy = Si 3 P =S5 Sp] e = S Spl; = ST (3)

+ _gt. gy~ —G-.Gp— —G— .Qqp— — G-
Sni,j =5;"; Snl,k,— =85 ; Sni’ki_ =813 Sni,j =5, (4)
R, = [P 0 SnF; ... P @ Spi) (5)

3.3 Tango in a sparseand dynamic network

In a sparsenetwork, the positionof afinger F' (i.e., P) of anoden may correspondo
amissingnode. In thatcase; pointsto the noderesponsiblef P. Hencethenodes
areplaying the finger role of the missingnodeslaying within their responsibility In
orderto presere the lookup efficiengy, eachnodeadaptsts routing tablein orderto
reachthe samepartof the network in the samenumberof hopsasit would have been
doneby eachmissingnodeswithin its responsibility Thatis why in Tango we define
thefingerpositionP(n) andthefingernodeF'(n) of anoden asin Equation6, where
jE...k ], g€[l... k] andi € [1..1].

P :(n) = Rupinfod F(n) = m st P (n)€Ry
+ = + + — +
P (n) = Rp.sup® d’, F (n) = m sdt. Pz-’g(n) € R,
(6)

To dealwith thedynamicsin a Tango network, thealgorithmsof join, faulttoler
anceandcorrectionon usedefinedin DKS canbe applieddirectly to Tango. More-
over, dueto the symmetryprovided by the Tango networks featuredwith £+ = k—,
thecorrectionon usecanbe mademoreefficient.

4 Analysis

In this sectiorwe comparelTango with DKS andChord,andshortlywith theDistance
Halving constant-dgreenetwork. Unlessstatedbtherwisejn ouranalysisve consider
fully populatechetworks.

4.1 Tango vs.DKS

DKS generalizehordto allow a tradeof betweenthe maximumlookup lengthin
the network (i.e., the diameter)and the size of the routing table at eachnode(i.e.,
the degree). The structureof DKS characterizedy k = 2 is the sameasthe one of
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Figure5: Pathsfrom node0 to all the othernodesin a Chordnetwork of size8 andin
aTango network of sizel3.

Chord.Tango alsosupportghetradeof betweerthediameterandthe degree.In this
subsectiorwe analyzethe scalability the path overlap andthe routing symmetryof
bothsystems.

4.1.1 Scalability

Thegraphicaldescriptiorof the Tango network building pattern(Figure4) highlights
qualitatively the improvementof the network scalability Onecanbe interestedn a
more quantitatve analysis. In this subsectiorwe shav that the size of the network
coveredwith Tango is muchlargerthanthe size of the network coveredwith DKS
andChord,while keepingthe samenetwork diameterandthe samedegreeat a node.
Thatis, in Tango theexponentialfactoris biggerthanin ChordandDKS. Recallthat
for k = 2, DKS is equialentto Chord. From the size growth Equationl, one can
deducehesizeof thenetwork (Equation7) coveredwith Tango atastep: > 2.

S,' = (k + ].) * Sz'_l - S,'_Q (7)
k14 /(k41)2 -4 _ kH1—/(k4+1)2-4 (8)
=, A=y

Thesolutionsof thecharacteristiequationcorrespondingo Equation7 arez; and
z9; seeEquation8. They areusedto expressS; in thenon-recursie Equation9.

S, — (21 = 1) % 2,71 (=1 P ©)
21 — 29 Z1 — 22

For a stepi sufiiciently high, the secondermof Equation9 canbeignored.Thus,
thegrowthratio,i.e.,theexponentialfactor, of thenetwork sizein Tango is equivalent
to z1, wherez; > k. This allows us to approximatethe network size coveredwith
Tango atastepi > 1 by S; = 2!, while the network diameterandthe degreeat a
nodearethesameasin DKS,i.e.,H; =i — 1 and(k — 1) * (i — 1) , respectiely.

The Tango approachof network construction(Figure 4) andthe corresponding
equationg(Equationl) provide us with anotherway to comparethe size growth in
Tango andDKS. Thatis, Equation10representthe network sizecoveredby Tango
atthei* constructiorstep.
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Figure6: (left) Ratiobetweerthenetwork sizescoveredby Tango andDKS, with the
samenumberof fingersat givenconstructiorsteps.(right) Distribution of the shortest
pathin Tango andDKS for k=2;5anddiameterequalto 10 and15, respectrely.

i—2
S;i=kimt+ S kI 2k (@t , +d ) i>2 (10)
j=1 Jok; Jok;

One can note that the first term of Equation10 correspondso the network size
coveredby DKS attheit” step,i.e., k*~!. Theseconderm,which alsoincreasesx-
ponentially correspond$o the differencebetweerthetwo network sizes.It represents
the cumulatedunexploitedredundang in DKS. In Figure5 we presentan exampleof
how Tango coversa larger network thanChord(DKS, k = 2) evenat the very early
building steps.With aroutingtableof size3, anodein Chord(DKS, k = 2), node0 in
ourexample,cancoveranetwork of size8 in 3 hops.Ontheotherhand,in Tango, in
3 hops,anodecancover alargernetwork, i.e., of size13.

To betterunderstandherelationbetweenTango andDKS, in Figure6 (left) we
plottedthe ratio betweerthe network sizescoveredin Tango andDKS at eachcon-
structionsteprangingfrom 1 to 32, for five differentvaluesof k. Recallthat the
network constructiorstepcorrespondso the maximumnumberof hopsto reachary
nodein the correspondingetwork, andthatthe numberof fingersaddedat eachstep
is the samein both Tango andDKS networks,i.e., kK — 1. Onecannotetwo things
here.First, for agivenk, theratio betweerthe network sizesis growing exponentially
ateachstep.For instancefor k = 2 (thecaseof Chord),onecanseethatatstepllthe
sizeof the network coveredby Tango is 10 timeslargerthanthe sizeof the network
coveredby DKS, while at steps16 and32 theratio is morethan20 and3053 respec-
tively. Secondit is interestingto notethatthe growth ratio of theratio decreaseask
increasesFor instancefor k = 16 theratio equals3 only at step22. However, since
increasingk in a P2Psystemleadsto increasingheresourceconsuminge.g.,routing
tablesizeandthe associatedhaintenancenessagest very eachnodein the network,
it is likely thatrelative smallvaluesof & will beemployed.

We werealsointerestedn the distribution of the shortespathin Tango with re-
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spectto theonein DKS (andimplicitly theonein Chord).In Figure6 (right) we show

thisdistributionfor £ = 2 andk = 5, andnetwork diameterequalto 10 and15, respec-
tively. Onecannotethat, while for DKS we geta properbell-shapedlistribution, for

Tango we geta closedistribution, but translatedo theright. This tells usthat, while

in DKS the proportionshortpaths/longpathsis equal,in Tango therearemorelong

pathsthanshortpaths.

4.1.2 Path overlap

Asindicatedn [8], node-disjoirmpathsareattractiveto P2Pnetworkssincethey provide
independenbackuproutingoptionswhenthe mainshortespathfails. They alsoshav
that de Bruijn networks offer much more pathsthat do not overlapthan Chord. We
wereinterestedo seewhat is the path overlappingin Tango. For this end,in the
following, we recallthe graphdefinitionsfrom [8].

Define P(z,y) asthe setof all verticesalongsomepathz to y. DenoteQ(z,y)
to bethe setof all verticesin P(z,y), exceptz andy: Q(z,y) = P(z,y) \ {z Uy}.
For ary pair of nodeg(z, y), defineP;(z, y) to betheshortespath(accordingwith the
greedyrouting rulesof the correspondingraph)to y throughz’s neighbori. Define
T(z,y) = > |Pi(z, y)| to bethetotalnumberof verticesin all shortespathsP;(z, y),
andU(z,y) = |U Qi(z,y)| to be the numberof uniquevertices in all suchpaths.
Then,definethe averagepercentag®f uniquenodesin all parallelpathsasin Equa-
tion 11, andthepath overlaptobe J(G) = 1 — U(G).

gngw

We computedhepathoverlapfor Chord(DKS, k = 2) andTango (theasymmet-
ric constructionk = 2), wherewe consideredalosevaluesof the network size. Thus,
we choseS;4 andS;5 for Chord,and S;o for Tango. The correspondingaluesfor
the pathoverlapare0.3909 and0.3981, and0.3985 respectiely. Onecanseethatthe
pathoverlapin bothChordandTango is quitesimilar.

Then,we wereinterestedn thenumberof non-overlappingoaths ; (z, y) between
ary pair of two nodesz andy in the network. We excludepairslike (z, z) andpairs
betweena nodeandits fingers. In Figure7 we shav the distribution of the number
of non-overlappingshortestpathsin DKS andTango for networks correspondingo
k = 2 andto the 10" iterationof the network constructiorstepS;y, i.e., sizeof 1024
andof 10946 respectiely. Onecannotethatfor DKS thereare50% of pairsfor which
thereare two non-overlappingshortestpaths. The percentagef pairs having more
non-overlappingpathsis decreasingsthe numberof pathsincreases.

In the caseof the Tango network the distribution is quite different. First, note
that thereis a significantpercentagef pairs (23%) with only one non-overlapping
path. Thatis, for thesepairs of nodesall the alternatve shortestpathshave some
nodesin commonwith the bestshortestpath. Secondwhile in DKS the numberof

INotethatthe definitionof the numberof unique verticesasprovidedin [8] containsa smallerror They
definedit asbeingU(z,y) = | U P;(z,y)|.

11
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Figure7: Distribution of the numberof non-overlappingshortesipathsin DKS (left)
andTango (right) for Syo with & = 2.

non-overlappingpathsvariesfrom two to the network diameterin Tango thenumber
of non-overlappingpathsbetweentwo nodesis maximumfour. Moreover, we con-
jecturethatin Tango networks of S; with ¢ > 3 andk = 2 the maximumnumber
of non-overlappingpathsbetweenary two nodesis maximumfour. Onecanincrease
the numberof non-overlappingpathsin Tango by increasingthe path redundang.

Thus,onecanmodify Equationl to obtainatradeof betweerthe pathredundang and

scalability

4.1.3 Symmetry

In generala network hasdifferentcharacteristicdyut theway it is organizedtogether
with the correspondingouting policiesare of greatimportance.A DHT basedP2P
network organizesitself suchthat it achieves efficient routing while being scalable
with the network increaseandresilientto individual nodefailures.

Within a network, eachnodehasa well determinedsetof fingerswhich constitute
theroutingtableof thatnode. Therulesfor organizingthe routingtablesin a network
characterize¢he entirenetwork. Two interestingpropertiesof a P2Pnetwork are: the
routing entry symmetry andtherouting cost symmetry.

Routing entry symmetry. This symmetryprovidesthe propertythatfor ary two dif-
ferentnodesof anetwork, n andp, if p hasafingerto n, thenn alsohasafingerto p (or
in the neighborhoodf p). This symmetryprovidesa nodewith the ability to perform
in-placenotificationsof routingentrychanges.

Routing costsymmetry. Therouting entry symmetryandthe associatedbokup pro-
tocol provide a network with anotherproperty: the routing costsymmetry Thatis, it
is very likely thatalookupfrom a noden to anothemodep takesthe samenumberof
hopsasalookupfrom p ton.

12
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asymmetrimetworks,with k£ = 3. (right) Distancevariationbetweerpairsof nodesn
symmetricandasymmetricTango for threefully populatednetworks corresponding
to Sg, Sy andSs.

Thesepropertiecanbe obtainedoy usingasymmetricapproactior organizingthe
routingtableof thenodeswithin a network. This approactwassuccessfullyappliedin
Hyperchord9] andS-Chord[10] P2Psystems.Theroutingentry symmetryproperty
canbe exploited to diminish the numberof messagexchangedor maintainingthe
routingtables.

TheTango structuringapproactproposedn the Section2 allows oneto organize
routingtablesin orderto achieve routing entry symmetryandrouting costsymmetry
To constructa Tango network characterizetby the two routing symmetryproperties,
onehave to () choosean odd exponentialfactor (k = 3,5,7,...), and (i¢) have the
samenumberof connectionsn the negative handsideasin the positive handside of
anode,i.e., ki = ki, addedat eachconstructionstepi. One canseethatasthe
differencebetweenk; andk;" increasesthe symmetryin the network decreasesror
instancewhenk;” = k — 1 wehaveanasymmetricetwork similarto ChordandDKS.

As alreadyshovedin Section3, the Tango network scalessimilarly, regardless
whetherit is symmetricor asymmetric.However, in our researchye werealsointer-
estedin looking at the averagelookup lengthin bothtypesof network. We did some
measurementsn highly sparsenetworks of differentsizes. We considerechetworks
with k£ = 3 andthe identifier spaceof size of approximatelyl.117 x 10?, which cor
respondgo the 17t* sizeiterationwhenconstructinghe network, S;7. The network
nodeswererandomlychosenWe consideredhe querydistribution to be uniform over
theidentifier space.In Figure8 (left) we shav the gainin averagelookup length of
thesymmetric poorly populatechetwork with respecto theasymmetricone.Onecan
seethatin the symmetricnetworks the averagelookup lengthis smallerthanin the
asymmetricones. As the network becomesnorepopulatedthe gaindecreasesThis
is normalsincein afully populatechetwork the averageookuplengthis the samefor
bothtypesof networks.

We continuedthe measurementsith analyzingthe routing costsymmetryfor the
symmetricand asymmetricapproachesn fully populatednetworks. We measured
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Figure9: Network size[N] andaverageroutingdistancg D] of Tango, DH andChord,
with respecto differentvaluesof nodedegree.

the percentageP(z) of ary pair of two nodesn andp suchthatthe absolutediffer-
encebetweenthe distance(n, p), in numberof hops,andthe distance(p, n), equals
z=|H(n — p) — H(p — n)|. For this test, we consideredk = 3 and the identi-
fier spacesf differentsizes,correspondindo Sg, S; andSs. As illustratedin Fig-
ure 8 (right), the symmetricapproactprovidesfull symmetryfor theroutingcost,i.e.,
for 100% of pairsthe differenceis 0. In contrastwith the asymmetricapproacithe
percentagef pairswith differenceequalto 0 is lessthan35% for all threestudied
networks. Furthermorewe have around40% of pairswith differenceequalto 1. One
cannotethatwith the asymmetricapproachwe have pairscharacterizedby a strong
asymmetnof theroutingcost.

4.2 Tango vs. constant-degeenetworks

A constant-dgreenetwork is a network whosesize canincreasesxponentially while

the nodedegreeremainsfixed andthe diameterincreasesdogarithmically Someex-

amplesare thosebasedon the de Bruijn graph,suchasKoordeand DH. Given the
constant-dgreeproperty they are well suitedfor systemswith small nodedegrees.
Thisis dueto thefactthata smallnodedegreeinducedow systemmaintenanceosts.
However, whena smalldiameteiis required thenodedegreeincreases.

In our analysiswe wereinterestedn the averageroutingdistanceandthe network
sizefor Tango (k = 3) and DH with respectto differentnode degrees. We also
plot themfor Chordto have a third party reference.To computethe averagerouting
distanceor DH we usedthe p4 formulafor deBruijn graphsgivenin [8] anddoubled
it to achieve load balancingassuggestedh [5]. As shownin Figure4.2,for thesame
nodedegreeqinferior to 34),andalmostthe samenetwork size,Tango provideslower
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valuesfor the averagerouting distancethan DH. This resultsare not that surprising
sinceboth Tango andde Bruijn graphsreduceredundang in multiplicity of valid
paths.

5 Conclusion

First,in this papemwe presenteé modelto bettercharacterizéhe structureof thecur-
rentlogarithmic-dgreeP2Pexponentialstructurechetworks,suchas TapestryPastry
ChordandDKS, in termsof absoluteandrelative exponentialstructurechetworks.

Ontheotherhand,we proposedheTango approacho betterstructuretherelative
exponentialnetworksto increaseheir scalabilityby exploiting the redundang in the
lookup paths. We shaved that Tango is more scalablethanthe currentlogarithmic-
basedHTs. We analyzedhestructureof Tango with respecto theoneof DKS and,
implicitly, to the oneof Chord. Particularly, we obsenedthat, for smallvaluesof the
exponentialfactork, Tango is muchmorescalablehanDKS (and Chord),while for
big valuesof k£ thescalabilityof thetwo networksis morecomparableHowever, since
increasing: leadsto increasingheresourceeonsumingandthe maintenanceost,it is
likely thatrelative smallvaluesof £ will beemployed. We alsoanalyzedlango with
respecto DH, aconstant-dgreenetwork. We obsenedthat,for networkswith relative
largenodedegreestheaverageroutingdistancen Tango andDH arecomparable.

Given its structuringflexibility andits scalability potential,we choseTango to
be the algorithmunderlyingthe recentlyreleasedP2Pmiddlewvare,called P2PS[11],
that we have developedwithin the framawork of our researclprojectsORAGE and
PEPITO. We alsoimplementedeseraldemoapplicationsisingP2PSjncludingaPos-
tit [12] applicationandachildren’s drawing tool calledP2P-Matiss¢13].

As future work, we planto addresghe redundang in Tango resultingfrom the
commutatve propertyof thefingeradditionoperation.
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