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Abstract

In recent years, efficient data location in peer-to-peer systems has be-
come the subject of many research theses. Chord is one of the simplest
peer-to-peer systems that addresses this issue. Despite its simplicity, one
of its main limitations remains the asymmetric organization of its rout-
ing. This leads to problems like inability to make in-place notifications
of routing entry changes, and incapacity to support symmetric applica-
tions and to efficiently exploit network proximity. As a solution to this
limitation, we propose S-Chord, an extension to Chord. In S-Chord the
routing is organized in a symmetric manner, and the circular search space
can be walked through bidirectionally. We prove that the way S-Chord
organizes its routing results, for the worst-case, in an improvement of
lookup efficiency of 25%, compared to Chord with the same size rout-
ing table. Furthermore, on average, assuming a uniform distribution of
queries, S-Chord results in a 10% improvement. To test our theoretical
results we implemented the S-Chord lookup algorithm and applied it to
networks of different sizes.

1 Introduction

Recently, researchers from various fields (e.g., distributed computing, network-
ing) have given paramount attention to peer-to-peer (p2p) systems [6], consid-
ered as possible solution treasure to problems like scalability, fault tolerance,
availability, and load balancing.

*This research was funded at UCL by the PEPITO project within the fifth framework
programme of the European Union, and at CETIC (http://www.cetic.be) by the ORAGE
project.



With the advent of popular applications like Gnutella [1] and Napster [2],
it was observed that the content location and routing through the p2p system
can lead to serious scalability problems that had to be addressed. So they
have been; examples of “well” structured systems providing such solutions are:
CAN [9], Chord [12], Tapestry [13], and Pastry [11]. They all increase scalability
and improve routing through the system by employing a distributed hash table
(DHT), where keys are associated with data objects, and peers are responsible
for storing a certain range of keys.

Chord is one of the simplest p2p system, employing a straightforward routing
algorithm, and its correctness can be easily proved. The algorithm used for
routing through the system is based on binary search. Chord structures its
search space of size N = 2 as a virtual ring where each participating node
maintains routing information (called fingers) about k other nodes. The system
uses a scalable lookup protocol to guarantee a bounded number of logs N hops.

Despite its simplicity, Chord is limited by its asymmetric organization of the
routing. This results in three main drawbacks. First, unlike other p2p systems,
in Chord the lookup is asymmetric. That is, the circular search space is walked
through only clockwise, making it very likely that the lookups from a node n
to another node p take a different number of hops than the lookups from p
towards n. Second, the lookup failure rate is quite high during node departures.
As shown in [7], the asymmetric routing entries of Chord result in inability
to perform in-place notification of routing entry changes. Third, in Chord the
underlying network proximity is both awkward and costly to exploit. Indeed,
as discussed in [4], in Chord “proximity routing” is quite difficult and not very
effective, and “proximity neighbor selection” remains an open question.

To overcome these drawbacks, we propose S-Chord, an extension to the Chord
system, providing a symmetric p2p lookup protocol. As will be shown in Sec-
tion 3.1, the symmetry in S-Chord is threefold; we have “routing entry symme-
try”, “routing cost symmetry”, and “finger table symmetry”. Related to our
work is the research done in Hyperchord [7], where the authors focus on intro-
ducing a certain degree of symmetry in order to improve the node join and leave
mechanism. Their solution is based on hypercube routing, where a node has
as fingers other nodes found at Hamming distance 1 from itself. Hyperchord
provides routing entry symmetry and routing cost symmetry.

S-Chord has the same symmetric properties as Hyperchord. In addition,
S-Chord organizes the fingers symmetrically, and the way the routing is managed
results in an improvement of the lookup efficiency. That is, with a routing table
of the same size as Chord! (and Hyperchord), S-Chord resolves keys in up to
25% less hops.

We begin our presentation by a brief overview of the Chord system. We
continue with introducing S-Chord by defining its symmetry and explaining
the mechanism for constructing its finger table. Then, we present the lookup
protocol together with its correctness proof, and the join and leave protocol. We
conclude with some simulation results, and discussions on possible extensions

L1f not stated otherwise, by Chord we mean the basic Chord [12] system.



and improvements in S-Chord.

2 Chord overview

In order to describe the way the routing table is formed in S-Chord, we first recall
how Chord is organized. We describe the finger table and the join/departure
mechanism.

2.1 Finger table in Chord

In Chord, the search space is organized as a virtual ring within which hashed
node and data item key identifiers are spread by using a consistent hashing.
For a search space of size N = 2F the identifiers can be situated on a circle of
numbers from 0 to 2¥ — 1. A base hash function is used to assign each node
and data item key a k-bit identifier (id). We will use the term “node” to refer
to both the node and its identifier under the hash function, as the meaning will
be clear from the context.

Each node has a predecessor and a successor representing references to the
previous and, respectively, the subsequent node in the circular search space.
In the system a key is stored at the node succeeding the id of that key on
the circular search space. Thus, the naive lookup procedure for a certain key
reduces to looking for the first node whose id is greater than, or equal to the id
of that key along the search space going clockwise.

To speed up the lookup process, each node maintains supplementary fingers
about some other nodes inside a finger table. At a node n, a finger represents an
additional reference that n has to a node in the network. Given a search space
of size N = 2F besides the references to its predecessor and successor, each node
in the Chord system stores k fingers. There is a distinction between finger_start
and finger_node. The finger_start represents the value a finger should have,
whereas the corresponding finger node represents the value the finger actually
has. Indeed, if the node whose id is equal with the value of the finger start is
not present in the system, the first present succeeding node along the virtual
ring is the finger. This node is called the finger_node.

We denote the i finger start by f[i] and the it* finger node by f[i]. Now
we can define the i* finger start at node n in Chord as n.f[i] := n @ 2i~!
(if not stated otherwise, the modulo arithmetics are positive and computed
with respect to the search space size N). Further, the it* finger node at node
n is the first node succeeding n by at least 27! going clockwise. That is,
n.f[i] := successor(n ® 2i~1), where successor(u) is a function that returns the
first present node that follows u along the circular search space.

The supplementary routing information of k = [logs N fingers allows Chord
to guarantee key resolution in a maximum [ogs N hops. At lookup, a node will
forward the query to the closest finger to that key, making the distance to the
node storing the key be at least halved at each hop.
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Figure 1: The fingers at node 1 in a poorly populated Chord network of size 64.

In Figure 1 we illustrate an example finger table in a Chord system with
11 nodes chosen from a search space of size N = 64. We want to determine
the routing information that node 1 stores. The first finger_node points to 3,
as node 3 is the first node that succeeds finger_start 1 @® 2° = 2. The second
finger_node also points to 3, as node 3 is the first node that, going clockwise,
succeeds node 1 with at least 2! = 2. The remaining finger_nodes are 7, 13, 18,
and respectively 40. Note that, at a node, it is the finger nodes that actually
constitutes the finger table.

2.2 Arrival and departure of nodes in Chord

In order to guarantee the correctness of the lookup protocol in Chord, it must
be ensured that the successor pointer at each node is up to date. Thus, the
node join operation is very important in Chord.

Depending on its id, each node has a well determined place in the circular
search space. When joining the system, a node n has to determine its successor
and predecessor, and to populate its fingers. To this end, it starts by looking for
its successor from which it determines the predecessor. Then, via its successor it
looks for its fingers. Furthermore, it notifies its successor about its presence. It
must be mentioned that in order to guarantee a successful join, each node runs
periodically a so called “stabilization protocol”. The stabilization protocol is
to guarantee that concurrent node arrivals preserve reachability of the existing
nodes. It is when running the stabilization protocol that the predecessor of n
notices the presence of n in the system, and thus completes the join procedure.

The departure of a node is treated in Chord in the same way as a node failure.
By periodically running the stabilization protocol, and looking up the fingers
at each node, the system correctness is ensured. Note that node departures



in Chord lead to temporary finger table inconsistency (i.e., finger references to
dead nodes) allowing lookup failures to happen.

3 The base S-Chord protocol

The S-Chord lookup protocol is based on the Chord protocol. It mainly differs
from Chord by the symmetric organization of its routing table, and its routing
policy.

In this section we present our view of symmetry over Chord and show how the
symmetric organization of the routing in S-Chord improves the lookup efficiency.

3.1 Symmetry in S-Chord

In S-Chord the symmetry is threefold. We have “routing entry symmetry”,
“routing cost symmetry”, and “finger table symmetry”.

Routing entry symmetry is that for any two different nodes, n and p, if p
has a finger to n, then n has a finger to p. This symmetry provides a node
with the ability to announce its arrival and departure to the interested nodes;
i.e., the nodes that should refer to it. As will be described in Section 4, in
a poorly populated network the routing entry symmetry is not achieved per
se. However, when doing the in-place notifications this problem is taken into
account and solved (see Figure 7). Furthermore, note that unlike Chord where
the virtual ring can be walked through in only one direction (i.e., clockwise),
the routing entry symmetry of S-Chord provides the ability to walk through the
virtual ring in both directions.

The routing entry symmetry and the associated lookup protocol provide the
S-Chord system with another characteristic: the routing cost symmetry. That
is, it is very likely that the lookup path lengths between any two nodes in the
system are equal, thus supporting symmetric applications. Nevertheless, the
two paths may differ; i.e., we don’t support “routing symmetry” 2.

In S-Chord, the routing entries in the finger table of any node n are organized
symmetrically with respect to the axis between n and n ® % (i-e., half the search
space of node n). This finger table symmetry provides a fast access to the whole
search space.

3.2 Finger table in S-Chord

As described in Section 2, in Chord, for a given search space of size N, the size
of the finger table at each node is [logaN']. In S-Chord we keep the same size of
the finger table as in Chord. The reason for this is to make S-Chord comparable
in performance with Chord.

To support symmetric, we organize the finger table in two symmetric sides.
Thus, each node maintains a finger table with at most 2 m entries, where

2We use the term “routing symmetry” as defined in the networking literature, meaning
that the paths (in both directions) between two nodes in the network are exactly the same.
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Figure 2: The fingers at node 1 in a poorly populated S-Chord network of size 64.

m = [logsN| (hereinafter we use m to denote [log4N']|, where N represents the
search space size). We refer to the set of the fingers in the interval [1,m] as
the right side of the finger table. Similarly, we refer to the the set of fingers in
the interval [m + 1,2m] as the left side of the finger table. Equation 1 defines
the finger_starts at node n in S-Chord, for both sides of the finger table. They
are located at positive and negative distances of powers of four from 7 in both
directions. -
ny n®4' i1 €[1l,m
n-flil = { no4™=t ¢ {m +]1, 2m) 1)
Equation 2 defines the finger node at node n. For ¢ found in the right side of
the finger table, the i finger_node at node n will contain the id of the first node
succeeding n by at least 4~! going clockwise (i.e., successort). For i found in
the left side, the i** finger node at node n will contain the id of the first node
succeeding n by at least 42™~% going counterclockwise (i.e., successor™). We
note that n.f[1] is the same as the successor of n, and n.f[2m] is the same as
the predecessor of n.

. successort(n @ 4°71) i€ [1,m)]
n-fli] = { successor™ (n© 4°™7%) i€ [m+1,2m] (2)

In Figure 2 we illustrate an example of an S-Chord system with 11 nodes
chosen from a search space of size N = 64 (i.e., m = 3). We want to determine
the routing information that node 1 stores. The first finger_node points to 3,
as node 3 is the first node that succeeds finger_start 1 @ 4° = 2. Furthermore,
the second and the third finger nodes are 7 and 18, respectively. The fourth fin-
ger_node points to 40, as node 40 is the first node that, going counterclockwise,
succeeds finger_start 1 © 42 = 49. The fifth and the sixth finger_nodes point to
60 and 0, respectively.



Figure 3: The fingers and their responsibilities at node 1 in a poorly populated
S-Chord network of size 64.

Two main reasons motivated us to choose the fingers in the left side of the
finger table using the operation successor™ rather than the operation successor™.
First, since a finger is not situated in the middle of the search space partition
it is responsible for (as will be described Section 3.3), it is better to locate
the finger going along the longer branch of its responsibility instead of going
along the smaller one. This is because, if the finger_start is not present, it is
more likely that the corresponding finger_node be well positioned to address the
corresponding responsibility. Second, by using the operation successor—, the
routing entry symmetry is better supported. That is, if the finger ¢ of a node p
points to a node n, then the finger 2m — (i — 1) of node n will point to node p
or very close to it.

As in Chord, at any node there may be situations where the it* finger gets
close, and sometimes even equal to the i + 1** finger. For instance, such a
scenario would appear at node 1 in Figure 2 if node 3 were not present; thus
the first finger at node 1 would be 7 instead of 3 (i.e., f[1] = f[2]).

Moreover, in S-Chord, there may be situations where fingers ¢ € [1,m] and
J € [m + 1,2m] of the same node get close to each other, or even overlap. An
example of two fingers from different sides of the finger table getting close to
each other would appear in Figure 2 if node 40 were not present; thus the fourth
finger at node 1 would be 21 instead of 40.



Since the finger nodes of a node are chosen with respect to Equation 2, there
are chances that fingers from the right side and the left side of the finger table
of a node overlap. This situation happens for any two fingers ¢ € [1,m] and
Jj € [m + 1,2m)] of the same node with the condition that there are no nodes

in the interval [f[z] — fb]] Nevertheless, as will be described in the next

section, by well choosing the responsibilities of the fingers of a node, the finger
overlapping does not affect the lookup efficiency or the lookup algorithm.

3.3 Finger responsibility in S-Chord

Each finger of a node n has a well determined responsibility. The responsibility
has the form of an interval and defines the range of keys expected to be found
in a minimum number of hops via that finger, going from node n.

Since the search space at node n is split among its fingers, the finger re-
sponsibilities are used when routing (i.e., determine which finger to forward the
request to). Thus, the request for a key k is sent to the finger whose responsi-
bility includes k. As will be described in Section 3.4.1, when resolving a key at
node n the responsibility of its fingers is considered only if the key does not fall
in the interval ranging between the predecessor and the successor of n. Indeed,
for a key falling in the interval between node n and its predecessor, the direct
responsible for that key is n. On the other hand, if the key is found between
node n and its successor, the direct responsible for the key is the successor of n.

Whereas in Chord a finger is situated at the beginning of the search space
partition it is responsible for, in S-Chord a finger is located inside it. Indeed, the
responsibility of the i** finger of a node starts from the half way point between
it and the i — 1** finger, and ends at the half way point between it and the
i+ 1" finger.

Equation 3 defines the finger responsibilities at node n. For simplicity and
clarity, we consider that n.f[0] = n.f[2m + 1] = n for any node 0 < n < N,
whereas for n = 0 we consider n.f[0] =0 and n.f[2m + 1] = N.

Ry (i) :=n.fli— 1o | 000G |y g pli) @ | 2LlRUORSE ] e [1,2m]  (3)

Note that for computing the lower and the upper bounds of the responsibility
interval we considered the floor of the ratios. The reason is that this results in
a smaller number of hops. Indeed, the number of hops to reach the item found
at equal distance between two successive fingers ¢ and ¢ + 1 of the same node
will be less if finger ¢ is chosen, instead of finger 7 + 1, since via finger ¢ + 1 the
query will do an additional hop.

Here is an example of setting the finger responsibilities of node 1 in the
network shown in Figure 3. Omne can see that, for instance, the finger re-
sponsibility for fingers 1, 2, and 4 are R;(1) =]2 — 5], R1(2) =]5 — 12], and
Ry (4) =]29 — 50], respectively.

The finger responsibility as defined in Equation 3 can be applied correctly
only to monotonically increasing values of the fingers modulo the network size.



n.find_successor™ (k) n.closest_node(k)

if k €]n, successor] then for i = 1 upto 2m
return successor; if k € R, (i) then

elseif k €]predecessor, n] then return n.f[i];
return n; fi

else return n;

n' = closest_node(k);
return n'.find_successor™ (k);

fi

Figure 4: Key lookup using the finger table and finger responsibilities in S-Chord.

Since, as described in Section 3.2, there are chances that fingers of the same
node overlap, the fingers of a node have to be ordered before computing their
responsibilities. At a node n, the fingers have to be ordered by the values
corresponding to the distance between themselves and node n, going clockwise.

Note that once the fingers ordered, changing the value of a finger ¢ at a node
n will only engage the change of its responsibility and those of the neighboring
fingers i — 1 and ¢ + 1 of node n. Furthermore, since the finger responsibility
is computed with respect to the finger_nodes, finger overlapping do not affect
the lookup efficiency, considering that the fingers of a node are ordered before
computing their responsibilities.

3.4 Lookup in S-Chord

In this section we describe the S-Chord lookup algorithm, and then we prove its
correctness. We also show that the number of hops needed for resolving a key
is bounded, and actually up to 25% smaller than in Chord.

3.4.1 The algorithm

In the S-Chord system, a key is stored at the first node equal to or greater than
the ¢d of that key on the circular search space. Thus, like in Chord, the lookup
procedure for a certain key reduces to looking for the first node whose id is
greater than, or equal to the id of that key.

In Figure 4, the pseudo-code for the find_successor™ and the closest_node
operations are presented. The operation find_successor™ is executed at node n
to look for the successor of k in the circular search space going clockwise. Note
that the remote calls and variables are preceded by the remote node id, while
the local procedure calls and variables omit the local node id.

In operation find_successor™ we first check whether the key falls in the range
between n and its successor, or its predecessor. In both cases the direct respon-
sible node is returned. That is, return the successor of n in the first case, and
n itself, in the second case. Otherwise, if the key is found farther in the ring,
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Figure 5: The path queries for keys 14 and 58, starting at node 1, in a poorly
populated S-Chord network of size 64.

look for the closest node (known by n) to k, that is n/, and forward the request
to it (i-e., apply find_successort on n').

Choosing the appropriate finger to forward the request to constitutes the core
of the lookup algorithm. Given a key k at node n, the operation closest_node
in Figure 4 returns the closest node (known by n) to k. To this end, the finger
responsibility described in Section 3.3 is employed.

As shown in Section 3.3, in S-Chord a finger is found inside the domain it is
responsible for. This is the case since a node can route back and forth within
the search space, depending on whether the id of the key is less, or greater than
the node id, respectively.

At node n, when looking for the closest node to a certain key k, the respon-
sibility of the fingers of n is checked. Hence, the closest node known by n is to
be the node referred by the finger of n whose responsibility includes k.

Two examples of lookup paths starting node 1, for keys 14 and 58, are illus-
trated in Figure 5. This is the same network as in Figure 1.

First, consider the lookup for key 14. Since, at node 1, 14 is included in the
responsibility of finger 3 (i.e., f[3]), the request is forwarded to node 18. From
node 18, the request is forwarded to node 15, since 14 is included in the respon-
sibility of f[5] of node 18. Note that the query was forwarded counterclockwise
in the circular search space. Finally, node 13 will find out that its successor,
node 15, is directly responsible for key 14, and thus return 15 to node 1.

Consider now the lookup for key 58. Since, at node 1, 58 is included in the
responsibility of f[5], the request is forwarded to node 60. Node 60 will find out
that it is directly responsible of key 58, and thus will return 60 to node 1.

10



3.4.2 The correctness

In this section we prove the correctness of the lookup algorithm in S-Chord,
and that the maximum number of hops necessary to reach the responsible node
of a given key is [%loggN 1. We will prove that this holds under the following
assumptions:

(A1) since the denser the network, the longer the lookup path length, we as-
sume the network to be fully populated;

(A2) the network is stable (i.e., nodes do not join or leave);

(A3) the network size is N = 42*,

Before proving the correctness of the algorithm, let us define some concepts.
The lookup of a key k at step ¢ consists in finding the closest finger, nfrl, of the
closest node, nf, (determined at step i — 1) to k, and in delegating the lookup
to that finger. Thus, the node responsible for the lookup on key k at step i is
ni. We refer to the origin of the query on key k by nl, and without loss of
generality we consider that for all k, nd = 0.

The smallest distance between a node u and a node v in a network of size NV
is A(u,v) == Min(u© v,v © u). The set of keys at distance less than or equal
to d from a node n is K(n,d) = {k| A(n,k) < d}. At step 4, the maximum
distance between the closest node known and the desired key k in a network of
size N is:

MazDist(i, N) := Maz{A(ni k) | k€ K(n, g)}. )

Since the network is fully populated, for 1 <1 <[, there are two fingers at
distance 4°~! for each node; one on its left hand side and the other on its right
hand side. Hence, the number of steps needed to perform a lookup on a key
localized at distance d from a node n is equal to the number of steps needed to
perform a lookup on a key localized at distance d from any other node u in the
network. For instance, the lookup path length on key 36 started at node 30 is
equivalent to the one on key 10 started at node 4. Hence, in a fully populated
network, the number of steps of a lookup on key k started at node 0 is equal to
1 + the number of steps of the lookup on a key localized at distance A(n}, k)
from node 0; n} being the finger to which 0 delegates the lookup on key k. By
taking this property into account, we can redefine MaxzDist(i, N) as follows:

X, i=0

MazDist(i,N) :={ 2’
azDist(i, N) { Maz{A(nL, k) k € K(n, MazDist(i — 1, N))}, i > 0.

()

We know that it takes one hop to evolve from MaxDist(i, N) to MaxDist(i+
1,N). Since the responsible of each key is reached when MaxzDist(j, N) = 0,
we observe that j denotes the upper bound of the number of hops taken by a
lookup for a given key. We compute MaxDist(i, N) for different values of i:

11
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We can observe that MazDist(3,N) = 1 x42*(=1 s equivalent to
MazDist(0,4**(-1) for a fully populated network of size & We can also
observe that there are three steps between MaxDist(0, N), and MaxzDist(3, N).
Thus, by defining MaxzHops(N) to be the maximum number of hops needed
to reach the responsible of any key in a network of size N, we can state that
MazHops(4°) = 0, and:

MaxzHops(4%*!) = 3 + MazHops(42* (=), (6)
By resolving the Equation 6 we have:
MazHops(4>*') = 3 x1 = 3log,4>". (7

Similarly, we can prove that for different values of the network size we have:

MazHops(42*1%32) = %log242*l+% + 1, (8)
MazHops(4>*'1) = 210gp4?*+! 4 1, 9)
MazHops(4>*1+3) = 31ogoa®+5 _ 1. (10)

One can note that equations 9 and 10 lead to the same number of hops, which
means that doubling a network of size 42*/*! does not increase the maximum
lookup path length.

Thus, we can conclude that in S-Chord, the maximum number of hops nec-
essary to reach the direct responsible of a given key in a network of size N is
[3logoNT; that is 25% smaller than loga N in Chord and Hyperchord.

4 Arrival and departure of nodes in S-Chord

The join operation is very important in a Chord based system; the correctness
of the whole system depends on its success. As in Hyperchord [7], in S-Chord,
due to the routing entry symmetry, we can introduce in-place notification of
routing entry changes. That is, a node joining the system is able to announce
its arrival to nodes in the system interested in pointing to it by their fingers.
Similarly, a node leaving the system is able to announce its departure to nodes
in the system pointing to it.

In Figure 6 we present the pseudo-code for node join and leave, together with
two associated operations, namely build_fingers and find_successor—. When
joining the system, a node starts by populating its finger table, then it informs

12



n.join(n') n.leave()
successor = n'.find_successort (n); inform_fingers(leave);

predecessor = successor.predecessor;

build_fingers(); n.find_successor™ (k)
inform_fingers(join); if k € [n, successor| then
return n;

n.build_fingers() elseif k € [predecessor, n| then
fl1] = successor; return predecessor;
f[2m] = predecessor; else
for i = 2 upto m n' = closest_node(k);

flil = f[l].ﬁnd.successor*(A[i]); return n’'.find_successor™ (k);

for ¢ = m + 2 upto 2m fi

fli] = f[2m].find_successor™ (ﬂz]),

Figure 6: Node join and leave in S_Chord.

the interested nodes about its arrival. When leaving, a node informs the inter-
ested nodes about its departure. Note that operation find_successor™ represents
the left hand correspondent of the operation find_successor™ defined in Figure 4.
Moreover, note that we have not described the stabilization protocol; it remains
the same as the one in Chord [12], ensuring the system correctness.

When a node n announces its intention (i.e., join or leave), it does that for all
the nodes interested. In a fully populated network, the nodes interested in the
intentions of n correspond to the fingers of n. In a poorly populated network,
besides the fingers of n, other nodes may be interested in the intentions of
n. These nodes are found at distances dgr, and dr from the targeted finger,
depending on whether we are referring to the fingers in the right hand side, or
to those in the left hand side, respectively.

OR := (successoron) —1 (11)

01, := (n © predecessor) — 1 (12)

In Equations 13 and 14 we define the distance between a node n about to
advertise and the last node to be informed. This distance will be used when
forwarding the intentions of node n to all interested nodes. Note that the first
nodes to be informed are the actual fingers of n.

-~

Dg(i) :=6r + (fil©n), i€l,m] (13)

Dy(i) = b1+ (ne flil), i€[m+1,2m] (14)

As shown in operation inform_fingers, Figure 7, the intention of a node n
is sent separately to fingers i in the right side, and in the left side, together
with its id, and the corresponding distance for which the message M should be
forwarded. Note that we use successor interchanged with f[1], likewise for pre-
decessor and f[2m]. When executing the operation inform, a node n processes
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n.inform_fingers(M)
for ¢ =1 uptom
fli].inform(n,i + m, Dg(3), M);
for i = m + 1 upto 2m
fli].inform(n,i — m, D (i), M);

n.inform(n’,i, D, M)
process_msg(n’, i, M);
if i < m then
if (n' © f[2m]) < D then
predecessor.inform(n’, i, D, M);
fi
else
if (f[1]en’) < D then
successor.inform(n’, i, D, M);

n.process_msg(n', i, M)
if M == join then
if < m then
if (f[i] © fli]) > (v’ © f[i]) then

fli] =7
fi
else
if (fli] © fli]) > (fli] © ') then
fli] =n';
fi
fi
elseif M == leave then
if : == 1 then

fI1] = successor_list[1];
elseif i < m then

~

fi fli] = find_successor™ (f[i]);
fi else
flil = ﬁnd_successor_(f[i]);
fi
fi

Figure 7: In-place notification of routing entries for node join and leave in S-Chord.

the message M corresponding to finger i, and forwards it until the node found
at distance D from the node n' (i.e., the node that made the announcement). If
the message is join and n' represents a better finger than the one found in fJé]
then update f[i]. If the message is leave, look for a new finger. For i equal to
1, take the first node into the successor_list. As an optimization for tolerating
sequences of up to r — 1 node failures, a node n stores a successor_list denoting
the list of the first r successors of n.

By being able to announce node departures, the period of time during which
a finger table remains inconsistent can be reduced dramatically. Moreover, we
can pass from a “pull” model, where the nodes periodically look for the correct
fingers, to a “push” model, where the nodes announce their intentions. Note
that, in this case, the “push” model is less costly (in number of messages) than
the “pull” model.

5 Simulation results

We implemented and simulated the lookup algorithms of Chord and S-Chord.
The algorithms were simulated in software as recursive functions using the
Mozart [3] programming platform. The measurements we made concerned only
the lookup path length, and the routing cost symmetry. For all the simulations
we considered the distribution of the queries to be uniform over the search space.
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Figure 10: Distance variation between pairs of nodes in Chord and S-Chord, measured

for two poorly populated networks of sizes 2'2 and 2%°, respectively.

For the first test we focused on the lookup path length. We measured the
maximum and the average path length for both systems, for fully populated
networks of sizes ranging from 2° to 2'6. The measurements confirmed our
expectations (see Figure 8). That is, in the worst case, the number of hops a
lookup can take in S-Chord is 25% less than in Chord. Note that for certain
values of the network size S-Chord does even better. This is the case represented
by Equation 10 for networks of size N = 2!, where (I mod N)= 3. We observed
that on average lookups take around 10% less hops in S-Chord than they do in
Chord.

In Figure 9 we plot the percentage of nodes that can be reached within
different lookup path lengths, for a network of size N = 216, Note that the dis-
tribution corresponding to S-Chord is closer to the origin than the distribution
corresponding to Chord. This results in a larger number of lookups of smaller
lengths, thus providing an explanation for the 10% improvement of the average
path length in S-Chord.

The second test analyses the routing cost symmetry for both systems. To this
end, we measured the percentage p(z) of any pair of two nodes n and n' such
that the absolute difference between the distance (n, n'), in number of hops,
and the distance (n', n), equals z:

|path_len(n — n') — path_len(n’ — n)| == .

For this test, we considered two networks (of sizes 2'2, and 22°), partially pop-
ulated (1024 nodes randomly chosen; the nodes are uniformly distributed over
the search space). As illustrated in Figure 10, in S-Chord, for 60% of pairs the
difference was 0, and for 90% it was less than or equal to 1. In contrast, in Chord
there were only 20% of pairs with difference 0, and 50% with difference less than
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or equal to 1. This shows us that whereas in Chord we have pairs characterized
by a strong asymmetry of the routing cost, in S-Chord the routing cost is highly
symmetric.

6 Discussions

In this section we discuss several ideas that we have about extending and im-
proving S-Chord.

6.1 Neighbor proximity

As was first mentioned in [10], mapping the overlay network to the underlying
physical network represents an important issue in current p2p systems. Ignoring
the topology of the underlying network when building p2p networks can lead
to extra communication costs between peers. In Chord, a previous attempt was
made in [5] in order to provide proximity routing, but as described in [4], the
solution is not very effective.

The symmetry of S-Chord opens new perspectives for exploiting the network
proximity. We have the idea of applying NetProber [8] over S-Chord, thus
providing proximity neighbor selection. NetProber is a simple, distributed, and
scalable component that can be combined with any connected overlay network in
order to allow the latter to adapt within a finite amount of time. This results in
running the NetProber algorithm at each node n in the system, and measuring
the physical distance between n and each node within its neighborhood in order
to perform a better mapping between the logical network and the physical one.

We observe that, due to the routing cost symmetry, and the routing entry
symmetry of S-Chord, the mapping operations can evolve to a stable point.
That is, for any two nodes u and v, if u gets closer (in number of physical hops)
to v, then v gets closer to u too.

6.2 Generalization

Given a network of size N, S-Chord employs a finger table with logs N entries
to resolve keys in maximum [%logzN | number of hops. In order to allow more
flexibility, it should be able to parameterize the system by the finger table size
that a node has to store, and the upper bound of the lookup path length for a
network of a given size.

We are currently working on a function that given the network size N, and
the desired degree of lookup efficiency, returns a finger table which respects
the symmetry of S-Chord. The preliminary results that we have obtained are
comparable and even better than the generalization proposed for Chord [12],
encouraging us to further explore this idea.
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6.3 Node failure

In order to cope with the failure of sequences of r nodes, as in Chord, each
S-Chord node has to store a list of r + 1 successor nodes (called successor_list).
This is less than in Hyperchord where r + 1 successors and r + 1 predecessors
are needed.

7 Conclusions and further work

In this paper we have introduced S-Chord, with its threefold symmetry, as a
candidate solution to the asymmetry drawbacks of Chord. S-Chord is based on
Chord and provides the same correctness guarantees. In addition, for steady
scenarios (low rate of nodes joining/leaving) it improves lookup efficiency up to
25%. Moreover, we are confident that for dynamic scenarios (relative high rate
of nodes joining/leaving) the average hop length in S-Chord is lower than the
one in Chord and comparable with the one in Hyperchord, since S-Chord is also
using notifications for the node leave procedure. We will address this issue in
details in a further study.

The symmetry in a Chord based system such as S-Chord is useful for improv-
ing the node join and leave operations. Indeed, the nodes joining/leaving the
system can announce their intentions to the interested nodes, thus employing a
“push”, rather than a “pull” model. Further on, the routing entry symmetry
and the routing cost symmetry in S-Chord is useful for exploiting the underlying
network proximity.

By the end of the present work we were well surprised to discover that there
are also other possibilities for symmetrically choosing the fingers of a node
resulting in even better lookup efficiency. We will address this issue in a further
study together with the generalization of S-Chord which is ongoing research.
The preliminary results encourage us to follow the work in this direction.

We would also like to investigate what we believe to be an open question;
i.e., achieving “routing symmetry” through proximity neighbor selection based
on a previous work, namely NetProber.
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